Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical and electronic properties of N/B doped graphene

Yu Zhong Dang Zhong Ke Xi-Zheng Cui Zhen

Citation:

Optical and electronic properties of N/B doped graphene

Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since its discovery in 2004, the graphene has attracted great attention because of its unique chemical bonding structure, which has excellent chemical, thermal, mechanical, electrical and optical properties. Due to the graphene being a zero band gap material, it has a limited development in the field of nano electronics. Therefore, in order to broaden its application scope, it is very important to carry out a study on opening the band gap of graphene. In this paper, we construct three models, i.e., the intrinsic graphene model, the N-doped graphene model, and the B-doped graphene model. We study the energy band structures and the electronic densities of states for the intrinsic graphene and the N/B doped graphenes with different doping concentrations. Furthermore, we study their optical and electronic properties including the absorption spectra, the reflection spectra, the refractive indexes, the conductivities, and the dielectric functions. The results are as follows. 1) The electronic states in the vicinity of the Fermi level for the intrinsic graphene are mainly generated by the C-2p orbits, while the electronic states in the vicinity of the Fermi level for the N/B doped graphenes are mainly generated through the hybridization between C-2p and N-2p/B-2p orbits. N doped graphene is of n-type doping, while B doped graphene is of p-type doping. 2) Compared with that of the intrinsic graphene, the Fermi level of N doped graphene moves up 5 eV. In the meantime, the band gap is opened, and the Dirac cone disappears. On the contrary, the Fermi level of B doped graphene moves down 3 eV compared with that of the intrinsic graphene. However, like the N doping, the band gap is also opened, and the Dirac cone disappears. Furthermore, the N doping is more effective than the B doping in opening the energy gap of the graphene for the same N/B doping concentration. 3) The N/B doping can cause the optical and electronic properties of the graphene to change, and exert great influences on the absorption spectrum, reflection spectrum, the refractive index, and the dielectric function, however it has little influence on the conductivity. When the energy of the incident wave is larger than a certain value, the optical and electrical properties of the intrinsic graphene remain unchanged. Besides, for the above case, the corresponding energies for the N/B doped graphenes are smaller than that for the intrinsic graphene. In addition, the energy for the B doped graphene is smallest. The conclusions of this paper can provide a theoretical basis for the application of graphene in optoelectronic devices.
      Corresponding author: Dang Zhong, dangzhongyue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377080, 60977054).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015物理学报 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012物理学报 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015物理学报 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012物理学报 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • [1] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [3] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [4] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [5] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [6] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [7] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [8] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [10] Lin Kui-Xin,  Li Duo-Sheng,  Ye Yin,  Jiang Wu-Gui,  Ye Zhi-Guo,  Qinghua Qin,  Zou Wei. Review of fabrication methods, physical properties, and applications of twisted bilayer graphene. Acta Physica Sinica, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [11] Liu Gui-Li, Yang Zhong-Hua. First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene. Acta Physica Sinica, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [12] Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Acta Physica Sinica, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [13] Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming. Fabrication and electrical engineering of graphene nanoribbons. Acta Physica Sinica, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [14] Cheng Zheng-Fu, Zheng Rui-Lun. Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [15] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [16] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [17] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [19] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [20] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
Metrics
  • Abstract views:  7069
  • PDF Downloads:  608
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2016
  • Accepted Date:  23 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回