Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode

Yang Wen-Yuan Dong Ye Dong Zhi-Wei

Citation:

Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode

Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Relativistic magnetron is a kind of compact cross-field high power microwave source. It has the virtues of wide frequency tunability and ability to operate with relative lower external magnetic field. To improve the compactness and reduce the size and weight of the relativistic magnetron further, a novel relativistic magnetron using all-cavity output and semi-transparent cathode is investigated theoretically and numerically. By using the all-cavity output structure, the radial dimension is reduced markedly (from 10.5 cm to 6.6 cm) and the axial dimension is also shortened considerably (from larger than 40 cm to less than 30 cm). Since the radiation fields in the interaction cavity are coupled through the coupling hole to the output fan waveguide, the cutoff frequencies of the fundamental mode and three higher order modes in the fan waveguide with different outer radii are calculated. The calculation results show that the mode separation is wide enough for the single mode operation on the fundamental mode. And by using the semi-transparent cathode, the high output efficiency can be obtained and the output characteristics are insensitive to the depth and width of each cathode slot. To verify the characteristic of the proposed magnetron, numerical simulations are carried out by using the three-dimensional particle-in-cell code. After careful optimization, simulations show that with a beam voltage of 395 kV and beam current of 5.6 kA, 1.15 GW output microwave with an efficiency of about 50% can be obtained at S-band with purer mode. The corresponding applied magnetic field is 4.75 kGs (1 Gs=1-4 T). In a relatively large range, both radiation power and the optimal magnetic field increase with the beam voltage. But the output efficiency keeps almost unchanged. The effects of the depth, width and length of the coupling hole, width of the fan waveguide and the distance from the beginning position of the fan waveguide to the coupling hole center Lsc on the output characteristics are also analyzed. Simulation results show that when the dimension of the coupling hole is small, the output power is low. But there is no mode competition and the device works on the up mode. With the increase of the coupling hole, the output power increases accordingly. When the coupling hole is large enough, the mode competition between the up mode and /3 mode becomes so serious that the mode cannot win any more. At the same time, the output power decreases markedly. There also exist optimal values of both the fan width and the beginning position of the fan waveguide (Lsc) for maximal output power.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305015, 11475155) and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2015B0402091).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

  • [1] Qi Shi-Kai, Wang Xiao-Xia, Wang Xing-Qi, Hu Ming-Wei, Liu Li, Zeng Wei. A novel Y2Hf2O7 ceramic cathode applied to high power magnetron tube. Acta Physica Sinica, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [2] Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei. Design and simulation of output mode conversion structure of relativistic magnetron with all cavity output. Acta Physica Sinica, 2018, 67(18): 188401. doi: 10.7498/aps.67.20180358
    [3] Qi Shi-Kai, Wang Xiao-Xia, Luo Ji-Run, Zhao Qing-Lan, Li Yun. A novel Y2O3-Gd2O3-HfO2 impregnated W base direct-heated cathode in magnetron tube. Acta Physica Sinica, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [4] Cheng Hui, Xie Hong-Quan, Liu Ying-Hui, Li Zheng-Hong, Wu Yang. Experimental researches of a four-cavity intense relativistic klystron amplifier. Acta Physica Sinica, 2014, 63(1): 018402. doi: 10.7498/aps.63.018402
    [5] Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping. Injection-locking of magnetrons with matched impedance. Acta Physica Sinica, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [6] Chen Yong-Dong, Wu Yang, Xie Hong-Quan, Li Zheng-Hong, Zhou Zi-Gang. Nonlinear interaction between modulated electron beam and the intermediate cavity of RKA. Acta Physica Sinica, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [7] Wang Hui-Hui, Meng Lin, Liu Da-Gang, Liu La-Qun, Yang Chao. Numerical optimization study of PIC/PSO for RBWO. Acta Physica Sinica, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [8] Shi Di-Fu, Wang Hong-Gang, Li Wei, Qian Bao-Liang. Theoretical analysis and numerical simulation of rising sun magnetron with sector cavities. Acta Physica Sinica, 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [9] Wang Zhao-Jun, Zhu Chun-Hua, Huo Wen-Sheng. Magnetization of degenerate and relativistic electron gas. Acta Physica Sinica, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [10] Li Wei, Liu Yong-Gui. Theoretical analysis of magnetronlike structure. Acta Physica Sinica, 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [11] Li Wei, Liu Yong-Gui, Yang Jian-Hua. Investigation on the power combination of the relativistic magnetrons with axial extraction. Acta Physica Sinica, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] Li Wei, Liu Yong-Gui. Simulation investigation of the 2 mode operating tunable relativistic magnetron with axial radiation. Acta Physica Sinica, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [13] Cheng Cheng, Zhang Xiao-Le, Qing Bo, Li Jia-Ming, Gao Xiang. Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations. Acta Physica Sinica, 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [15] Huang Hua, Luo Xiong, Lei Lu-Rong, Luo Guang-Yao, Zhang Bei-Zhen, Jin Xiao, Tan Jie. Investigation on a long pulse relativistic extended interaction cavity oscillator. Acta Physica Sinica, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [16] Huang Hua, Meng Fan-Bao, Fan Zhi-Kai, Li Zheng-Hong, Fang Xiang. Analysis and design of triaxial output cavity in a relativistic klystron amplifier. Acta Physica Sinica, 2006, 55(10): 5344-5348. doi: 10.7498/aps.55.5344
    [17] Hu Min, Zhu Da-Jun, Liu Sheng-Gang. Longitudinal self-modulation of an intense relativistic electron beam in a two-cavity system. Acta Physica Sinica, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [18] TAO BI-XIU, TAO BI-YOU. GENERAL-RELATIVISTIC “WALL OF GALAXIES”. Acta Physica Sinica, 1996, 45(7): 1091-1099. doi: 10.7498/aps.45.1091
    [19] Ai Ke-cong, Ximen Ji-ye, Zhou Li-wei. RELATIVISTIC ABERRATION THEORY FOR A COMBINED ELECTROMAGNETIC FOCUSING-DEFLECTION SYSTEM POSSESSING A SPHERICAL CATHODE LENS. Acta Physica Sinica, 1986, 35(9): 1210-1222. doi: 10.7498/aps.35.1210
    [20] T. S. CHANG. RELATIVISTIC NATURE OF COULOMBIAN INTERACTIONS. Acta Physica Sinica, 1951, 8(2): 123-130. doi: 10.7498/aps.8.123
Metrics
  • Abstract views:  4228
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2016
  • Accepted Date:  06 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回