Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-dimensional magnetic photonic crystal structures with wide absolute bandgaps

Chen Min Wan Ting Wang Zheng Luo Zhao-Ming Liu Jing

Citation:

One-dimensional magnetic photonic crystal structures with wide absolute bandgaps

Chen Min, Wan Ting, Wang Zheng, Luo Zhao-Ming, Liu Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The photonic absolute bandgaps have many potential applications in specific fields, and some methods to enlarge the absolute bandgaps, such as adjusting the material and the rotational symmetry, constituting a heterostructure have been explored. Recently, with the occurring of metamaterial, the photonic crystal based on metamaterial has also realized the wide absolute bandgaps. However, the metamaterial is an artificially structured material of which the construction is more complicated. In this paper, one-dimensional magnetic photonic crystal structure with wide absolute bandgaps is proposed, which is composed of two kinds of magnetic materials with the same refractive index and physical thickness but different wave impedances. First of all, the transmission properties of one-dimensional magnetic and non-magnetic photonic crystals with the same wave impedance ratio are studied by using transfer matrix method. It is shown that the normalized frequency bandwidth of magnetic photonic crystal, i. e. the ratio of the band of bandgap to its center, is 0.41, while the normalized frequency bandwidth of the non-magnetic photonic crystal is 0.14. From the results, we can conclude that the absolute bandgap of the above magnetic photonic crystal is wider than that of non-magnetic photonic crystal because the former bandgap is not sensitive to the incident angle nor polarization. Secondly, we adjust the wave impedance ratios of the two kinds of magnetic materials and make them respectively reach 2, 4 and 6, with the refractive index and the physical thickness kept unchanged. By analyzing their transmission properties, it is found that the normalized frequency bandwidths of the absolute bandgaps are respectively 0.47, 0.84 and 1.03, and the greater the difference between the two wave impedances, the wider the normalized frequency bandwidth is. Thirdly, we investigate the influence of the per-layer physical thickness of the magnetic material on the bandgap, with the other parameters remaining unchanged. It is shown that the center of the absolute bandgap shifts toward high frequency with the decrease of the per-layer physical thickness. Finally, a kind of heterostructure is constructed by the above two one-dimensional magnetic photonic crystals. The normalized frequency ranges of the first and the second absolute bandgap of one magnetic photonic crystal structure are respectively 1.18-2.85 and 5.37-6.85. The normalized frequency range of the absolute bandgap of the other magnetic photonic crystal is 2.37-5.68. The normalized frequency range of the absolute bandgap of the heterostructure can be enlarged to 1.18-6.85 and the corresponding normalized frequency bandwidth can reach more than 1.41. The wide absolute bandgaps can be applied to integrated optics, optical fiber communication and high-power laser systems, according to which we may design the polarization-independent and omnidirectional devices such as reflectors, optical switchers and optical filters.
      Corresponding author: Luo Zhao-Ming, zhaomingluo@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61205126), the Science and Technology Program of Hunan Province, China(Grant No. 2016TP1021), and the Experimental Project of College Students in Hunan Province and Hunan Institute of Science and Technology, China.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)

    [4]

    Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)

    [5]

    Dowling J P 1998 Science 282 1841

    [6]

    Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006物理学报55 230]

    [7]

    Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008物理学报57 3249]

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882

    [11]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [12]

    Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110

    [13]

    Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641

    [14]

    Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171

    [15]

    Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120

    [16]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [19]

    Joseph S, Hafiz A K 2014 Optik 125 2734

    [20]

    Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571

    [21]

    Feng X, Li H 2013 Eur. Phys. J. D 67 1

    [22]

    Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28

    [23]

    Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221

    [24]

    Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297

    [25]

    Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204

    [26]

    Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67

    [27]

    Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959

    [28]

    Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936

    [29]

    Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]

    [30]

    Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)

    [4]

    Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)

    [5]

    Dowling J P 1998 Science 282 1841

    [6]

    Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006物理学报55 230]

    [7]

    Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008物理学报57 3249]

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882

    [11]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [12]

    Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110

    [13]

    Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641

    [14]

    Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171

    [15]

    Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120

    [16]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [19]

    Joseph S, Hafiz A K 2014 Optik 125 2734

    [20]

    Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571

    [21]

    Feng X, Li H 2013 Eur. Phys. J. D 67 1

    [22]

    Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28

    [23]

    Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221

    [24]

    Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297

    [25]

    Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204

    [26]

    Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67

    [27]

    Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959

    [28]

    Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936

    [29]

    Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]

    [30]

    Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936

  • [1] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [2] Sheng Juan-Juan, He Xing-Dao, Liu Bin, Li Shu-Jing. Photonic band gaps of two-dimensional hexagon-lattice photonic crystals based on Taiji-shaped dielectric rods. Acta Physica Sinica, 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [3] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Shi Du-Fang. Polarization properties of one-dimensional photonic crystal tunneling mode containing metamaterials. Acta Physica Sinica, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [4] Li Chun-Zao, Liu Shao-Bin, Kong Xiang-Kun, Bian Bo-Rui, Zhang Xue-Yong. Effects of external magnetic field and temperature on low frequency photonic band width in cryogenic superconducting photonic crystals. Acta Physica Sinica, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [5] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [6] Zhang Hai-Feng, Liu Shao-Bin, Kong Xiang. Analsys of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode. Acta Physica Sinica, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [7] Yang Yi-Biao, Wang Shuan-Feng, Li Xiu-Jie, Wang Yun-Cai, Liang Wei. Band gap characteristics of two-dimensional photonic crystals made of a triangular lattice of dielectric rods. Acta Physica Sinica, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [8] Xu Zhen-Long, Wu Fu-Gen. Photonic band gaps of two-dimensional phononic crystals tuned and optimized by modifying the configuration. Acta Physica Sinica, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [9] Ren Xiao-Bin, Zhai Tian-Rui, Ren Zhi, Lin Jing, Zhou Jing, Liu Da-He. The effect of nonlinear exposure on bandgap of three-dimensional holographic photonic crystal. Acta Physica Sinica, 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [10] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Yue Ling-Na, Lu Zhi-Gang, Gong Hua-Rong, Huang Min-Zhi, Wang Wen-Xiang. Mode and band analysis of finite dielectric photonic crystals. Acta Physica Sinica, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [11] Optimal design based on a two-dimensional photonic crystal of hexagonal lattice with a large complete band gap. Acta Physica Sinica, 2007, 56(12): 7029-7033. doi: 10.7498/aps.56.7029
    [12] Xu Xing-Sheng, Xiong Zhi-Gang, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [13] Dong Hai-Xia, Jiang Hai-Tao, Yang Cheng-Quan, Shi Yun-Long. Properties of impurity band in one-dimensional photonic crystal coupled-resonator containing defect layers with negative refractive index. Acta Physica Sinica, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [14] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] Liu Huan, Yao Jian-Quan, Li En-Bang. Simulated calculation and analysis of the forbidden band for fabricating two- and three-dimensional photonic crystal structures using holographic lithography. Acta Physica Sinica, 2006, 55(5): 2286-2292. doi: 10.7498/aps.55.2286
    [16] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Lu Wei. Fabrication and photonic band gap property of the two-dimensional square lattice based on silicon. Acta Physica Sinica, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] . Acta Physica Sinica, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
    [19] Zhuang Fei, Xiao San-Shui, Shang Lian-Ju, He Sai-Ling. . Acta Physica Sinica, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] Xiao San-Shui, Shen Lin-Fang, He Sai-Ling. . Acta Physica Sinica, 2002, 51(12): 2858-2864. doi: 10.7498/aps.51.2858
Metrics
  • Abstract views:  5065
  • PDF Downloads:  338
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2016
  • Accepted Date:  16 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回