Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High speed and high precision demodulation method of fiber grating based on dispersion effect

Li Zheng-Ying Zhou Lei Sun Wen-Feng Li Zi-Mo Wang Jia-Qi Guo Hui-Yong Wang Hong-Hai

Citation:

High speed and high precision demodulation method of fiber grating based on dispersion effect

Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fiber Bragg grating sensor is widely used in military, construction, transportation, aviation and other fields due to its advantages in high sensitivity, high precision, high multiplexing and small volume. However, in some special fields such as ultrasonic flaw detection, high-speed vibration and aeroengine monitoring, the signals are rapidly changing, thus requiring high speed sampling. But the demodulation speed of traditional fiber Bragg grating demodulation techniques is hardly to satisfy the requirements, which seriously limits the application of fiber Bragg grating sensor in these fields. To solve this problem, in this paper we propose a dispersion compensation fiber(DCF)-single mode fiber(SMF) dual-channel demodulation method. Based on the SMF and the DCF with the characteristics of positive and negative dispersion coefficients in the anomalous dispersion region respectively, and combining with the optical time domain reflection technology, high speed and high precision demodulation of fiber grating can be realized. This system adopts the whole fiber structure without wavelength scanning, and the grating wavelength and position information can be obtained according to the pulse delay difference under a single optical pulse. There are three factors that quite influence the system accuracy and need to be solved: the grating space disturbance which is caused by the temperature change of the sensor network fiber; the dual-channel length disturbance caused by the DCF-SMF dual-channel temperature change; the dispersion disturbance caused by the inaccurate dispersion difference of the DCF-SMF. By constructing the DCF-SMF dual-channel, adopting the reference grating and introducing the dispersion difference correction model, these influence factors are solved. The case of temperature disturbance elimination is tested by the 5-75℃ temperature experiments. And the results are as follows: when the temperature of the sensor network fiber changes, the standard deviation of this dual-channel demodulation system is 16.8 pm, while only using the DCF single-channel to form the demodulation system, the standard deviation is 3614 pm. And when the DCF-SMF dual-channel is disturbed by temperature, the standard deviation is 11.9 pm. For a long time demodulation under constant temperature, the standard deviation of this system is 6.4 pm. Thus the influences of the sensor network fiber temperature change and the dual-channel temperature change on the system demodulation accuracy are effectively reduced. The feasibility and accuracy of this method are also verified by the strain experiment. Experimental results show that the highest demodulation rate of this method is 1 MHz, while the linearity can be up to 0.9998, and the accuracy is about 8.5 pm. So the system with the dispersion difference correction model has a high precision. Therefore, this novel demodulation method has advantages of high speed and high precision, good stability and large dynamic range, and it is very applicable to quasi-distributed fiber Bragg grating sensing system.
      Corresponding author: Li Zheng-Ying, zhyli@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61575149).
    [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1] Liu Yu, Ren Guo-Bin, Jin Wen-Xing, Wu Yue, Yang Yu-Guang, Jian Shui-Sheng. Enhanced selfintegration algorithm for fiber torsion sensor based acoustically-induced fiber grating. Acta Physica Sinica, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [2] Cheng Jun-Ni. Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing. Acta Physica Sinica, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [3] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [4] Wang Min, Liu Fu-Fei, Zhou Xian, Dai Yu-Tang, Yang Ming-Hong. Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films. Acta Physica Sinica, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [5] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [7] Liu Tie-Gen, Yu Zhe, Jiang Jun-Feng, Liu Kun, Zhang Xue-Zhi, Ding Zhen-Yang, Wang Shuang, Hu Hao-Feng, Han Qun, Zhang Hong-Xia, Li Zhi-Hong. Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Physica Sinica, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [8] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [10] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [11] Wang Ting-Ting, Ge Yi-Xian, Chang Jian-Hua, Ke Wei, Wang Ming. Refractive index sensing characteristic of a hybrid-Fabry-Pérot interferometer based on an in-fiber ellipsoidal cavity. Acta Physica Sinica, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [12] Ma Hai-Qiang, Li Quan-Yue, Wang Long, Wei Ke-Jin, Zhang Yong, Jiao Rong-Zhen. A high-speed fiber polarization controller with high accuracy. Acta Physica Sinica, 2013, 62(8): 084217. doi: 10.7498/aps.62.084217
    [13] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [14] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [15] Zhu Tao, Song Yun, Rao Yun-Jiang, Zhu Yong. Theory and fabrication of long period fiber grating with rotary refractive index modulation induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [16] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju, Wang Jiu-Ling. Study on characteristics of a CO2-laser-induced ultra-long-period fiber grating. Acta Physica Sinica, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [17] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [18] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [19] Pei Li, Ning Ti-Gang, Li Tang-Jun, Dong Xiao-Wei, Jian Shui-Sheng. Studies on the dispersion compensation of fiber Bragg grating in high-speed opti cal communication system. Acta Physica Sinica, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [20] Qiao Xue-Guang, Jia Zhen-An, Fu Hai-Wei, Li Ming, Zhou Hong. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
Metrics
  • Abstract views:  6116
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2016
  • Accepted Date:  28 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回