Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DC electric field induced orientation of a graphene in water

Dong Ruo-Yu Cao Peng Cao Gui-Xing Hu Guo-Jie Cao Bing-Yang

Citation:

DC electric field induced orientation of a graphene in water

Dong Ruo-Yu, Cao Peng, Cao Gui-Xing, Hu Guo-Jie, Cao Bing-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, as a classical two-dimensional material, has various excellent physical properties, which can be further transferred into its nanocomposite. Under external fields, the nonspherical nanoparticles in liquid environment will exhibit various deterministic movements, among them is the orientation behavior. By realizing the orientation control of nanoparticles, we can, on one hand, increase the thermal conductivity of the system along the oriented direction, and on the other hand, fabricate novel nano-devices based on the nanoscale self-assembly, which may become the key components in NEMS and Lab-on-a-chip architectures. However, current studies mainly focus on the orientations of one-dimensional rod-shaped particles, like carbon nanotubes. For a two-dimensional nanoparticle, like graphene, the situation is more complex than the one-dimensional one, because two unit vectors should be defined to monitor the orientation behaviors. As far as we know, this part of research has not been extensively carried out. Thus, in this paper, the molecular dynamics method is used to study the orientation of a single uncharged rectangular graphene in water, induced by DC electric fields. We track the orientations of the normal and long-side vectors of graphene. The results show that at a relatively high electric strength of 1.0 V/nm, the graphene is preferred to orient its normal vector perpendicular and its long-side vector with a small angle(located between 0° and 30°) with respect to the electric direction, respectively. With the increase of the electric field strength, the orientation preference of the normal vector along the electric direction is increased. To explain this phenomenon, we calculate the orientation distribution of water molecules in the first hydration shell. The dipoles tend to be parallel to the electric direction, and the surfaces of water molecules tend to be parallel to the surface of graphene. These two combined effects result in the above orientation behavior of the normal vector. Another interesting phenomenon is that the decrease of the length to width ratio of graphene will cause both the orientation preferences of the normal vector and the long-side vector to decrease. By utilizing the Einstein relation, we can obtain the rotational diffusion coefficients of graphene around the normal vector and long-side vector. The qualitative results show that the orientation orders of the normal vector and long-side vector respectively have negative correlations with the rotational diffusion coefficients of the rotation around the long-side vector and the normal vector. The orientation behavior of the platelike graphene actually comes from the competing effects between its rotational Brownian motion and the external field. Increasing the strength of the external field or reducing the rotational diffusivity will both lead to an increased orientation order of the nonspherical nanoparticle.
      Corresponding author: Cao Bing-Yang, caoby@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51322603) and Institute of Telecommunication Satellite Innovation Fund, China.
    [1]

    Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652

    [2]

    Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392

    [3]

    Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182

    [4]

    Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202

    [5]

    Guo X, Su J, Guo H 2012 Soft Matter 8 1010

    [6]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [7]

    Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312

    [8]

    Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299

    [9]

    van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [10]

    Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706

    [11]

    Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116

    [12]

    Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877

    [13]

    Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32

    [14]

    Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801

    [15]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703

    [16]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120

    [17]

    Song Y, Dai L L 2010 Mol. Simulat. 36 560

    [18]

    Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327

    [19]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [20]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [21]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [22]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [23]

    Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304

    [24]

    Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820

    [25]

    Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984

    [26]

    Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302

  • [1]

    Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652

    [2]

    Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392

    [3]

    Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182

    [4]

    Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202

    [5]

    Guo X, Su J, Guo H 2012 Soft Matter 8 1010

    [6]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [7]

    Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312

    [8]

    Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299

    [9]

    van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [10]

    Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706

    [11]

    Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116

    [12]

    Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877

    [13]

    Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32

    [14]

    Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801

    [15]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703

    [16]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120

    [17]

    Song Y, Dai L L 2010 Mol. Simulat. 36 560

    [18]

    Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327

    [19]

    Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701

    [20]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [21]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [22]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [23]

    Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304

    [24]

    Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820

    [25]

    Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984

    [26]

    Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302

  • [1] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui. Wettability and morphology of liquid gallium on graphene surface. Acta Physica Sinica, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [10] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [12] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [13] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [15] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [16] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [17] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
Metrics
  • Abstract views:  5983
  • PDF Downloads:  445
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2016
  • Accepted Date:  13 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回