Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on dual energy grating based X-ray phase contrast imaging

Rong Feng Xie Yan-Na Tai Xue-Feng Geng Lei

Citation:

Research on dual energy grating based X-ray phase contrast imaging

Rong Feng, Xie Yan-Na, Tai Xue-Feng, Geng Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There exist some problems in a grating-based X-ray differential phase contrast imaging system, such as complex imaging system, low imaging efficiency and high requirements for step precision. The phase information extraction method of imaging system has been developed into an existing two-stepping phase shift method from the original phase stepping method, which improves the imaging efficiency and reduces the imaging radiation dose and imaging time. However, the method of two-stepping phase shift still needs to move the grating, and the requirement for accuracy of the step position is also very high. According to the problems mentioned above, in this paper we propose a dual energy multi-line X-ray source and a dual energy analysis grating. The dual energy multi-line X-ray source can emit two different levels of X-ray structure light, which can replace the X-ray source and source grating. The dual energy analysis grating is composed of two different types of scintillator materials, which are in staggered distribution. One is scintillator material that can transform high energy X-ray into visible light, and the other one can convert low energy X-ray into visible light. The dual energy analysis grating can replace traditional analysis grating and the conversion screen of X-ray CCD detector. By using the dual energy multi-line X-ray source and dual energy analysis grating in grating-based X-ray differential phase contrast imaging system, a dual energy grating-based X-ray phase contrast imaging system is proposed in this paper. In addition, in this paper we show the structure and imaging principle of the imaging system. The imaging system can achieve high and low energy X-ray imaging without moving grating. Two levels of X-ray imaging are equivalent to the analysis grating displacement π phase, which is in line with the traditional two-stepping method of two image phase shift requirements. Therefore, after the normalization processing of the two kinds of energies, the phase information can be extracted by the traditional two-stepping phase shift method. In order to validate the correctnesses of the imaging principle of the proposed imaging system and extraction method of phase information, the imaging system is simulated. The simulation is performed on the assumption that an X-ray beam passes through a polymethyl methacrylate sphere as a phase specimen, and the method is adopted by using the proposed dual energy X-ray about left and right lumbar imaging to extract phase information. The simulation result shows that the imaging system can realize normal imaging, and the first-order derivative distribution of the sphere phase extracted by the dual energy X-ray method is consistent with the experimental result.
      Corresponding author: Rong Feng, shusheng677@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 61405144), the Young Scientists Fund of the Tianjin Municipal Science and Technology Commission, China(Grant No. 15JCQNJC 42100), and the Tianjin Science and Technology Commissioner Project, China(Grant No. 15JCTPJC56300).
    [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [3]

    Schofield M A, Zhua Y 2003 Opt. Lett. 28 1194

    [4]

    Wilkins S W, Gureyev T E, Gao D, Pogany A, Stevenson W 1996 Nature 384 335

    [5]

    Pogany A, Gao D, Wilkins S W 1997 Rev. Sci. Insirum. 68 2774

    [6]

    Zanette I, Weitkamp T, Donath T, Rutishauser S, David C 2010 Phys. Rev. Lett. 105 248102

    [7]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [8]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [9]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [10]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [11]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576 (in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [12]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese)[刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨2010物理学报59 6927]

    [13]

    Li J, Liu W J, Zhu P P, Sun Y 2012 Nucl. Instr. Meth. Phys. Res. A 691 86

    [14]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

    [15]

    Bennett E, Kopace R, Stein A, Wen H 2010 Med. Phys. 37 6047

    [16]

    Andre Y, Martin B, Guillaume P, Andreas M, Thomas B, Johannes W, Arne T, Markus S, Jan M, Danays K, Maximilian A, Juergen M, Pfeiffer F 2014 Opt. Express 22 547

    [17]

    Christian K, Vincent R, Rolf K, Claus U 2010 Opt. Lett. 35 1932

    [18]

    Li T T, Li H, Diao L H 2012 Appl. Phys. Lett. 101 091108

    [19]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

  • [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [3]

    Schofield M A, Zhua Y 2003 Opt. Lett. 28 1194

    [4]

    Wilkins S W, Gureyev T E, Gao D, Pogany A, Stevenson W 1996 Nature 384 335

    [5]

    Pogany A, Gao D, Wilkins S W 1997 Rev. Sci. Insirum. 68 2774

    [6]

    Zanette I, Weitkamp T, Donath T, Rutishauser S, David C 2010 Phys. Rev. Lett. 105 248102

    [7]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [8]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [9]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [10]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [11]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576 (in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [12]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese)[刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨2010物理学报59 6927]

    [13]

    Li J, Liu W J, Zhu P P, Sun Y 2012 Nucl. Instr. Meth. Phys. Res. A 691 86

    [14]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

    [15]

    Bennett E, Kopace R, Stein A, Wen H 2010 Med. Phys. 37 6047

    [16]

    Andre Y, Martin B, Guillaume P, Andreas M, Thomas B, Johannes W, Arne T, Markus S, Jan M, Danays K, Maximilian A, Juergen M, Pfeiffer F 2014 Opt. Express 22 547

    [17]

    Christian K, Vincent R, Rolf K, Claus U 2010 Opt. Lett. 35 1932

    [18]

    Li T T, Li H, Diao L H 2012 Appl. Phys. Lett. 101 091108

    [19]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

  • [1] Yao Chun-Xia, He Qi-Li, Zhang Jin, Fu Tian-Yu, Wu Zhao, Wang Shan-Feng, Huang Wan-Xia, Yuan Qing-Xi, Liu Peng, Wang Yan, Zhang Kai. Method of single exposure phase contrast imaging without analyser grating. Acta Physica Sinica, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [2] Yang Jun, Wu Hao, Luo Kun-Hao, Guo Jin-Chuan, Zong Fang-Ke. Suppression of artifacts in X-ray phase-contrast images retrieved by Fourier transform. Acta Physica Sinica, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [3] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [4] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [5] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [6] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [7] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [8] Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Theoretical and experimental study of two-phase-stepping approach for hard X-ray differential phase contrast imaging. Acta Physica Sinica, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [9] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] Yang Qiang, Liu Xin, Guo Jin-Chuan, Lei Yao-Hu, Huang Jian-Heng, Niu Han-Ben. Experimental study of X-ray phase contrast imaging without absorbing grating. Acta Physica Sinica, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [11] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [12] Su Zhao-Feng, Yang Hai-Liang, Qiu Ai-Ci, Sun Jian-Feng, Cong Pei-Tian, Wang Liang-Ping, Lei Tian-Shi, Han Juan-Juan. Measurements of energy spectra for high energy pulsed X-ray. Acta Physica Sinica, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [13] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [14] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [15] Li Han, Tang Xin-Feng, Zhao Wen-Yu, Zhang Qing-Jie. The structure and X-ray photoelectron spectroscopy analysis of double-atom filled skutterudite compounds. Acta Physica Sinica, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [16] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Luo Yu-Yu, Xie Hong-Lan, Chen Min, Xiao Ti-Qiao. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging. Acta Physica Sinica, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [17] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [18] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [19] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [20] D.C.GAO, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, MAI ZHEN-HONG. HARD X-RAY PHASE-CONTRAST IMAGING. Acta Physica Sinica, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
Metrics
  • Abstract views:  5553
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2016
  • Accepted Date:  08 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回