Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The research of δ13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy

Niu Ming-Sheng Wang Gui-Shi

Citation:

The research of δ13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy

Niu Ming-Sheng, Wang Gui-Shi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Development of optical isotope techniques has provided scientists with a set of powerful tools for investigating the sources and sink of atmospheric CO2. Here we describe a continuous, high precision, compact and portable carbon dioxide isotope ratio laser multi-pass cell spectrometer with a tunable distribute feedback laser at 2.008 μm based on tunable diode laser absorption spectroscopy and, the spectrometer has good temperature and pressure stability. In order to deduce the noise, drift effect and background changes associated with low level signals, a superior signal processing technique of wavelet denoising, which possesses multi-level analytical resolutions both in time and frequency-domains, is introduced. After evaluating the method, evaluation ability and applicabilities of several common wavelet functions are analyzed and tested, the wavelet function of Haar is selected as an optimal wavelet basis function. Based on the analysis of the optimal decomposition level of Haa wavelet function, the VISU function is selected as an optimal wavelet threshold function. The denoising effect and measurement precision are evaluated by use of the VISU threshold function in the measurement process of carbon dioxide stable isotope ratio. The measurement results of carbon dioxide stable isotope ratio before and after suppressing the noises are compared in the same experiment conditions and, the inconsistent reasons of the measured results are theoretically analyzed. This technique allows the measurement of the δ-value for carbon dioxide isotopic ratios with a precision of -12.5‰ and and the measuremnt results show that the wavelet denoising measuring results have higher measurement accuracy, and the measurement precise of carbon dioxide isotope ratio is 7.3 times the original measurement results. The application of the wavelet denoising to the carbon dioxide isotope ratio measurement for the first time proves that the capability of the new near-infrared direct absorption technique to measure isotope ratio can permit high-frequency, near-continuous isotope measurement and obtain the high precision and accurate real-time stable isotope data directly in the field. This technique provides an important tool for studying the resource and sink of green house gases in the future.
      Corresponding author: Niu Ming-Sheng, nmsheng@163.com;wulixi2004@126.com ; Wang Gui-Shi, nmsheng@163.com;wulixi2004@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405022) and the Qufu Normal University Fundation, China (Grant No. 20130760).
    [1]

    Liu L X, Zhou L X, Vaughn B, Miller J B, Brand W A, Rothe M, Xia L J 2014 J. Geophys. Res. Atmos. 119 5602

    [2]

    Mai B R, Deng X J, An X Q, Liu X T, Li F, Liu X 2014 China Environmental Science 34 1098 (in Chinese)[麦博儒, 邓雪娇, 安兴琴, 刘显通, 李菲, 刘霞2014中国环境科学34 1098]

    [3]

    Trend W 2016 Nature 531 281

    [4]

    Quéré C L, Andres R J, Boden T, et al. 2013 Earth Syst. Sci. Data 5 165

    [5]

    Marland G 2012 Nat. Clim. Change 2 645

    [6]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [7]

    Brass M, Röckmann T 2010 Atmos. Meas. Tech. 3 1707

    [8]

    Zare R N, Kuramoto D S, Haase C, Tan S M, Crosson E R, Saad Nabil M R 2009 PNAS 106 10928

    [9]

    McManus J B, Nelson D D, Zahniser M S 2015 Opt. Express 23 6569

    [10]

    Sayres D S, Moyer E J, Hanisco T F, et al. 2009 Rev. Sci. Instrum. 80 044102

    [11]

    Wang C, Srivastava N, Jones B A, Rreese R B 2008 Appl. Phys. B 92 259

    [12]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 31 1921

    [13]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese)[李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春2013物理学报62 180203]

    [14]

    Pang J P, Wen X F, Sun X M 2016 Sci. Total. Environ. 539 322

    [15]

    Bartlome R, Sigrist M W 2009 Opt. Lett. 34 866

    [16]

    Li J S, Yu B L, Fischer H 2015 Appl. Spectrosc. 69 496

    [17]

    Zheng C T, Ye W L, Huang J Q, Cao T S, Lv M, Dang J M, Wang Y D 2014 Sens. Actuators B 190 249

    [18]

    Bergamaschi P, Schupp M, Harris G W 1994 Appl. Opt. 33 7704

    [19]

    Zhang T W, Krooss B M 2001 Geochim. Cosmochim. Acta 65 2723

    [20]

    Kerstel E R, Trigt R V, Dam N, Reuss J, Meijer H A J 1999 Anal. Chem. 71 5297

    [21]

    Wang Y, Mo J Y 2005 Spectrosc. Spect. Anal. 25 124 (in Chinese)[王瑛, 莫金垣2005光谱学与光谱分析25 124]

    [22]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Rößner K, Brckner D 2010 Opt. Lett. 35 0146

    [23]

    Yang Q 2011 International Conference on Electronics & Optoelectronics 3 129

    [24]

    Luisier F, Vonesch C, Blu T, Unser M 2009 IEEE International Symposium on Biomedical Imaging 29 310

    [25]

    Ma Y, Wang X Y, Yong H 2011 CAC 28 303 (in Chinese)[马毅, 汪西原, 雍慧2011计算机与应用化学28 303]

    [26]

    Kumar H S, Pai P S, Sriram N S, Vijay G S 2013 Procedia Engineering 64 805

    [27]

    Gradolewski D, Redlarski G 2014 Comput. Biol. Med. 52 119

    [28]

    Naga R A, Chandralingam S, Anjaneyulu T, Satyanarayana K 2012 Meas. Sci. Rev. 12 46

    [29]

    Xu J, Kawashima S 2015 Arch. Ration. Mech. Anal. 28 1

    [30]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 3 1921

    [31]

    Werle P 2011 Appl. Phys. B 102 313

  • [1]

    Liu L X, Zhou L X, Vaughn B, Miller J B, Brand W A, Rothe M, Xia L J 2014 J. Geophys. Res. Atmos. 119 5602

    [2]

    Mai B R, Deng X J, An X Q, Liu X T, Li F, Liu X 2014 China Environmental Science 34 1098 (in Chinese)[麦博儒, 邓雪娇, 安兴琴, 刘显通, 李菲, 刘霞2014中国环境科学34 1098]

    [3]

    Trend W 2016 Nature 531 281

    [4]

    Quéré C L, Andres R J, Boden T, et al. 2013 Earth Syst. Sci. Data 5 165

    [5]

    Marland G 2012 Nat. Clim. Change 2 645

    [6]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [7]

    Brass M, Röckmann T 2010 Atmos. Meas. Tech. 3 1707

    [8]

    Zare R N, Kuramoto D S, Haase C, Tan S M, Crosson E R, Saad Nabil M R 2009 PNAS 106 10928

    [9]

    McManus J B, Nelson D D, Zahniser M S 2015 Opt. Express 23 6569

    [10]

    Sayres D S, Moyer E J, Hanisco T F, et al. 2009 Rev. Sci. Instrum. 80 044102

    [11]

    Wang C, Srivastava N, Jones B A, Rreese R B 2008 Appl. Phys. B 92 259

    [12]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 31 1921

    [13]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese)[李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春2013物理学报62 180203]

    [14]

    Pang J P, Wen X F, Sun X M 2016 Sci. Total. Environ. 539 322

    [15]

    Bartlome R, Sigrist M W 2009 Opt. Lett. 34 866

    [16]

    Li J S, Yu B L, Fischer H 2015 Appl. Spectrosc. 69 496

    [17]

    Zheng C T, Ye W L, Huang J Q, Cao T S, Lv M, Dang J M, Wang Y D 2014 Sens. Actuators B 190 249

    [18]

    Bergamaschi P, Schupp M, Harris G W 1994 Appl. Opt. 33 7704

    [19]

    Zhang T W, Krooss B M 2001 Geochim. Cosmochim. Acta 65 2723

    [20]

    Kerstel E R, Trigt R V, Dam N, Reuss J, Meijer H A J 1999 Anal. Chem. 71 5297

    [21]

    Wang Y, Mo J Y 2005 Spectrosc. Spect. Anal. 25 124 (in Chinese)[王瑛, 莫金垣2005光谱学与光谱分析25 124]

    [22]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Rößner K, Brckner D 2010 Opt. Lett. 35 0146

    [23]

    Yang Q 2011 International Conference on Electronics & Optoelectronics 3 129

    [24]

    Luisier F, Vonesch C, Blu T, Unser M 2009 IEEE International Symposium on Biomedical Imaging 29 310

    [25]

    Ma Y, Wang X Y, Yong H 2011 CAC 28 303 (in Chinese)[马毅, 汪西原, 雍慧2011计算机与应用化学28 303]

    [26]

    Kumar H S, Pai P S, Sriram N S, Vijay G S 2013 Procedia Engineering 64 805

    [27]

    Gradolewski D, Redlarski G 2014 Comput. Biol. Med. 52 119

    [28]

    Naga R A, Chandralingam S, Anjaneyulu T, Satyanarayana K 2012 Meas. Sci. Rev. 12 46

    [29]

    Xu J, Kawashima S 2015 Arch. Ration. Mech. Anal. 28 1

    [30]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 3 1921

    [31]

    Werle P 2011 Appl. Phys. B 102 313

  • [1] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] Wang Jian-Hai, Qian Jian-Qiang, Dou Zhi-Peng, Lin Rui, Xu Ze-Yu, Cheng Peng, Wang Cheng, Li Lei, Li Ying-Zi. Wavelet transform based method of measuring multi-frequency electrostatic force microscopy dynamic process. Acta Physica Sinica, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [3] Zhan Hai-Yang, Xing Fei, Zhang Li. Analysis of optical measurement precision limit for close-to-atomic scale manufacturing. Acta Physica Sinica, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [4] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [5] Sun Ming-Guo, Ma Hong-Liang, Liu Qiang, Cao Zhen-Song, Wang Gui-Shi, Liu Kun, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong. Highly precise and real-time measurements of 13CO2/12CO2 isotopic ratio in breath using a 2 μm diode laser. Acta Physica Sinica, 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [6] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [7] Li Zhi-Bin, Ma Hong-Liang, Cao Zhen-Song, Sun Ming-Guo, Huang Yin-Bo, Zhu Wen-Yue, Liu Qiang. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Physica Sinica, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [8] Meng Xiang-Song, Zhang Fu-Min, Qu Xing-Hua. High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging. Acta Physica Sinica, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [9] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing. Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy. Acta Physica Sinica, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [10] Chen Xiang-Zi, Fang Wei, Wang Yu-Peng, Yang Zhen-Ling, Quan Xiang-Qian. An overview of the method of high-precision measuring the aperture diaphragn area. Acta Physica Sinica, 2013, 62(16): 164211. doi: 10.7498/aps.62.164211
    [11] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Jin Ling, Li Sheng, Wei Xiu-Li, Feng Ming-Chun. High-precision CO2 and 13CO2 analysis. Acta Physica Sinica, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [12] Li Qin-Lei, Fan Feng-Ying, Xiong Wei-Jia, Chen An-Ying, Li Yan. Laser frequency scale system in carbon isotopic abundance measurement. Acta Physica Sinica, 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [13] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [14] Bai Fu-Zhong, Rao Chang-Hui. Effect of pinhole diameter on measurement accuracy of self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [15] Wang Xiao-Lu, Xu Mei, Linghu Rong-Feng, Sun Ke-Bin, Yang Xiang-Dong. Theoretical study on the partial wave cross sections of vibrational and rotational excitation for the collisions of He isotope with H2. Acta Physica Sinica, 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [16] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical study on the partial cross section for the second vibrational excitation in He-H2 collisions. Acta Physica Sinica, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] Li Yan-Chao, Zhang Liang, Yang Yan-Ling, Gao Long, Xu Bo, Wang Chun-Hui. The method for multi-beam laser heterodyne high-precision measurement of the glass thickness. Acta Physica Sinica, 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [18] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical calculation of the partial cross section in He-H2(D2,T2) collisions. Acta Physica Sinica, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [19] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] XIE JIAN-PING, XING XIAO-ZHENG, LI CHUAN-QI, ZHU MAO-SHENG, S. OZONO. THE EFFECT OF LIGHT POLARIZATION ON HIGH ACCURACY MEASUREMENTS OF THIN WIRE DIAMETER. Acta Physica Sinica, 1989, 38(3): 399-406. doi: 10.7498/aps.38.399
Metrics
  • Abstract views:  5050
  • PDF Downloads:  229
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2016
  • Accepted Date:  27 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回