Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy

Li Rui Zuo Xiao-Wei Wang En-Gang

Citation:

Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy

Li Rui, Zuo Xiao-Wei, Wang En-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ag-Cu alloys are used as both decorative materials because of beautiful appearance, and conductors due to excellent combinations of strength and electrical conductivity. The strength and electrical conductivity of Ag-Cu alloy are closely related to precipitation behavior of Cu-rich phase in Ag matrix. The morphology, size and volume fraction of Cu-rich phase have been highly concerned. In this work, a series of aging temperatures is used in both supersaturated solid-solution and cold-rolled Ag-7wt.%Cu samples to investigate the relationship between the precipitation behavior of Cu-rich phase and property by using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and properties measurements (hardness and resistivity). The DSC results of as-solid-solution Ag-7wt.%Cu alloy show a distinct exothermic precipitation reaction of Cu out of Ag matrix ranging from 300 C to 350 C, and the activation energy is estimated to be (1111.6) kJ/mol according to Kissinger equation. Because of the existence of deformation energy, the DSC results of cold-rolled Ag-7wt.%Cu sample show a distinct exothermic precipitation reaction of Cu from Ag matrix between 290 C and 330 C, and the activation energy is (12812) kJ/mol. XRD analysis indicates that the dissolved Cu in Ag is dependent on ageing temperature, and the change of solubility of Cu in Ag is calculated by XRD curve. Microstructural analysis demonstrates that spherical Cu-rich phases are precipitated from Ag-matrix at 450 C in both solid-solution and cold-rolled Ag-7wt.%Cu alloys. Moreover, the banded structure of Cu-rich phase is found in the solid-solution sample after being aged at 450 C. The deformation twinning Ag is found in the cold-rolled sample. The precipitation and dissolution of Cu-rich phase in Ag matrix play important roles in the resistivity and microhardness. With ageing temperature increasing (ageing temperatures range from 200 to 450 C), the electrical resistivity of as-solid-solution aged sample decreases and the microhardness increases, however, both electrical resistivity and microhardness of as-cold-rolled aged sample decrease. With ageing temperature increasing further (over 450 C), the electrical resistivity increases and the microhardness decreases in both aged samples. Because of the formations of dislocation and deformation twinning Ag, the microhardness of cold-rolled sample reaches to 217 HV, which is higher than that of solid-solution sample. Strengthening and electrical resistivity models are built based on the microstructural characterization and concentration contributions. These theoretical predictions are in good agreement with experimental values. Our model demonstrates that the precipitation and dissloution of Cu in Ag significantly affect the electrical conductivity, and dislocation and deformation twinning play important roles in microhardess in Ag-Cu alloy. This work clarifies the influencing mechanism of different microstructures on the microhardness and resistivity of Ag-Cu alloy.
      Corresponding author: Wang En-Gang, egwang@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51474066, 51004038) and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07015).
    [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • [1] Li Hong-Ming,  Dong Chuang,  Wang Qing,  Li Xiao-Na,  Zhao Ya-Jun,  Zhou Da-Yu. Correlation between electrical resistivity and strength of copper alloy and material classification. Acta Physica Sinica, 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [2] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [3] Gu Qian-Qian, Ruan Ying, Dai Fu-Ping. Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition. Acta Physica Sinica, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [4] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [5] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [6] Rao Xian-Jun, Zhong Yun-Bo, Zhang Zeng-Guang, Wang Zhi-Qiang, Deng Kang, Ren Zhong-Ming, Xu Kuang-Di. Electrical and mechanical properties of a Cu-Cr-Zr alloy aged under an imposed DC current and static magnetic field. Acta Physica Sinica, 2012, 61(22): 221301. doi: 10.7498/aps.61.221301
    [7] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [8] Zhang Ming-Xiao, Tian Xue-Lei, Guo Feng-Xiang. Design and application of a device based on electromagnetic induction principle for electrical resistivity qualitative measurement of liquid and solid metals. Acta Physica Sinica, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [9] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [10] Fan Fei, Ban Chun-Yan, Wang Yang, Ba Qi-Xian, Cui Jian-Zhong. The resistivity evolution with temperature of 7050 aluminium alloy by different casting methods. Acta Physica Sinica, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [11] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [12] Bie Shao-Wei, Jiang Jian-Jun, Ma Qiang, Du Gang, Yuan Lin, Di Yong-Jiang, Feng Ze-Kun, He Hua-Hui. Soft magnetic properties and microwave permeability of multilayer nanogranular films with high resistivity. Acta Physica Sinica, 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [13] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [14] Zhou Yun, Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang. Resistivity of polyaniline nanotubes doped with naphthalene sulfonic acid: dependence on moisture and ethanol. Acta Physica Sinica, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [15] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [16] Wu Han-Hua, Wang Jian-Bo, Long Bei-Yu, Lü Xian-Yi, Long Bei-Hong, Jin Zeng-Sun, Bai Yi-Zhen, Bi Dong-Mei. Effect of current density on physical and chemical properties of microarc oxidation coatings of aluminium alloy. Acta Physica Sinica, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [17] Wang Yuan, Xu Ke-Wei. Cu-W Thin film characterized by surface fractal and resistivity. Acta Physica Sinica, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [18] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [19] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] WANG QIANG, LU KUN-QUAN, LI YAN-XIANG. THE RELATIONSHIP BETWEEN ELECTRICAL RESISTIVITY, THERMOPOWER AND TEMPERATURE FOR LIQUID InSb. Acta Physica Sinica, 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
Metrics
  • Abstract views:  4970
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2016
  • Accepted Date:  16 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回