Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of thermal erosion and topographical change of divertor target plates induced by type-I edge-localized modes

Huang Yan Sun Ji-Zhong Sang Chao-Feng Hu Wan-Peng Wang De-Zhen

Citation:

Numerical study of thermal erosion and topographical change of divertor target plates induced by type-I edge-localized modes

Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The high-Z material tungsten (W) is a promising candidate of the plasma facing components (PFCs) for the future tokamak reactors due to its high melting point (3683 K), low tritium retention and low sputtering yield. However, there are still many problems about W PFCs. One of them is the material melting under off-normal transient heat fluxesit is one of the most outstanding open questions associated with the use of W divertor targets in international thermonuclear experimental reactor (ITER). This requires us urgently to understand the W melting behavior under high power flux deposition condition. In this paper, a two-dimensional (2D) fluid dynamic model is employed by solving the liquid hydrodynamic Navier-Stokes equation together with the 2D heat conduction equation for studying the erosion of the divertor tungsten targets and its resulting topographical modification during a type I-like edge-localized mode (ELM) in ITER with a Gaussian power density profile heat load. In the present model, major interaction forces, including surface tension, pressure gradient and magnetic force responsible for melt layer motion, are taken into account. The simulation results are first benchmarked with the calculated results by other code to validate the present model and code. Simulations are carried out in a wide range of fusion plasma performance parameters, and the results indicate that the lifetime of W plate is determined mainly by the evolution of the melt layer. As a consequence of the melt layer motion, melted tungsten is flushed to the periphery, a rather deep erosion dent appears, and at the dent edges two humps of tungsten form during the ELM. The humps at both edges are almost at the same height. Calculated results show the topographical modification becomes noticeable when the W plate is exposed to a heat flux of 2000 MWm-2 for 0.8 ms (in the simulation, the parameter k=ə/əT is taken to be -9.010-5 Nm-1K-1, where is the surface tension coefficient and T is the temperature). The values of the humps are both about 2.1 m, and the surface roughness is about 1.1 m. The longer the duration of the ELM, the more rapidly the humps rise. The melt flow may account for the higher surface temperature at the pool periphery, and for the larger melt thickness. It is found that when the energy flux is under 3000 MWm-2 the surface tension is a major driving force for the motion of melt layer. Under the same heat flux, the bigger the k used in the simulation, the more severe the surface topography of the target becomes; while at the same k, the higher the heat flux, the more severe the surface topography of the target becomes. In addition, a modified numerical method algorithm for solving the governing equations is proposed.
      Corresponding author: Sun Ji-Zhong, jsun@dlut.edu.cn;wangdez@dlut.edu.cn ; Wang De-Zhen, jsun@dlut.edu.cn;wangdez@dlut.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB109001, 2013GB107003), the National Natural Science Foundation of China (Grant Nos. 11275042, 11575039), and the Scientific Research Foundation of the Liaoning Province, China (Grant No. 2016J027).
    [1]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese)[徐伟, 万宝年, 谢纪康2003物理学报52 1970]

    [2]

    Coenen J W, Arnoux G, Bazylev B, Matthews G F, Autricque A, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Jachmich S, Komm M, Knaup M, Krieger K, Marsen S, Meigs A, Mertens P, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 Nucl. Fusion 55 023010

    [3]

    Sergienko G, Bazylev B, Huber A, Kreter A, Litnovsky A, Rubel M, Philipps V, Pospieszczyk A, Mertens P, Samm U, Schweer B, Schmitz O, Tokar M, The TEXTOR Team 2007 J. Nucl. Mater. 363 96

    [4]

    Sergienko G, Bazylev B, Hirai T 2007 Phy. Scr. T128 81

    [5]

    Coenen J W, Arnoux G, Bazylev B, Matthews G F, Jachmich S, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Knaup M, Komm M, Krieger K, Marsen S, Meigs A, Mertens Ph, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 J. Nucl. Mater. 463 78

    [6]

    Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313 11

    [7]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523

    [8]

    Raffray A R, Federici G 1997 J. Nucl. Mater. 244 85

    [9]

    Federici G, Raffray A R 1997 J. Nucl. Mater. 244 101

    [10]

    Hassanein A, Konkashbaev I 2000 Fusion Eng. Des. 51 681

    [11]

    Sizyuk V, Hassanein A 2015 Phy. Plasmas 22 013301

    [12]

    Litunovsky V N, Kuznetsov V E, Lyublin B V, Ovchinnikov I B, Titov V A, Hassanein A 2000 Fusion Eng. Des. 49 249

    [13]

    Shi Y, Miloshevsky G, Hassanein A 2011 Fusion Eng. Des. 86 155

    [14]

    Hassanein A, Konkashbaev I 2003 J. Nucl. Mater. 313 664

    [15]

    Genco F, Hassanein A 2014 Laser Part. Beams 32 217

    [16]

    Wurz H, Bazylev B, Landman I, Pestchanyi S, Gross S 2001 Fusion Eng. Des. 56 397

    [17]

    Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69

    [18]

    Coenen J W, Bazylev B, Brezinsek S 2011 J. Nucl. Mater. 415 S78

    [19]

    Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75 407

    [20]

    Bazylev B N, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363 1011

    [21]

    Igitkhanov Y, Bazylev B 2014 IEEE Trans. Plasma Sci. 42 2284

    [22]

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真2014物理学报63 035204]

    [23]

    Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28

    [24]

    Miloshevsky G V, Hassanein 2010 Nucl. Fusion 50 115005

    [25]

    Loarte A 2003 Plasma Phys. Control. Fusion 45 1549

    [26]

    Hassanein A, Sizyuk T, Konkashbaev I 2009 J. Nucl. Mater. 390 777

    [27]

    Jiang C B, Zhang Y L, Ding Z P 2007 Computational Fluid Mechanics (the first edition) (Beijing:China Power Press) p211(in Chinese)[江春波, 张永良, 丁则平2007计算流体力学(第一版)(北京:中国电力出版社)第211页]

    [28]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (2nd Ed.) (Oxford:Clarendon Press) pp89-91

    [29]

    Behrisch R 2010 J. Synch. Investig. 4 549

    [30]

    Semak V V, Damkroger B, Kempka S 1999 J. Phys. D:Appl. Phys. 32 1819

    [31]

    Udaykumar H S, Shyy W 1995 Int. J. Heat Mass Transfer 38 2057

    [32]

    Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 J. Nucl. Mater. 337 766

    [33]

    Udaykumar H S, Shyy W, Rao M M 1996 Int. J. Numer. Methods Fluids 22 691

    [34]

    Wurz H, Pestchanyi S, Bazylev B, Landman I, Kappler F 2001 J. Nucl. Mater. 290 1138

    [35]

    Elsholz F, Scholl E, Scharfenorth C, Seewald G, Eichler H J, Rosenfeld A 2005 J. Appl. Phys. 98 103516

    [36]

    Elsholz F, Scholl E, Rosenfeld A 2004 Appl. Phys. Lett. 84 4167

  • [1]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese)[徐伟, 万宝年, 谢纪康2003物理学报52 1970]

    [2]

    Coenen J W, Arnoux G, Bazylev B, Matthews G F, Autricque A, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Jachmich S, Komm M, Knaup M, Krieger K, Marsen S, Meigs A, Mertens P, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 Nucl. Fusion 55 023010

    [3]

    Sergienko G, Bazylev B, Huber A, Kreter A, Litnovsky A, Rubel M, Philipps V, Pospieszczyk A, Mertens P, Samm U, Schweer B, Schmitz O, Tokar M, The TEXTOR Team 2007 J. Nucl. Mater. 363 96

    [4]

    Sergienko G, Bazylev B, Hirai T 2007 Phy. Scr. T128 81

    [5]

    Coenen J W, Arnoux G, Bazylev B, Matthews G F, Jachmich S, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Knaup M, Komm M, Krieger K, Marsen S, Meigs A, Mertens Ph, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 J. Nucl. Mater. 463 78

    [6]

    Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313 11

    [7]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523

    [8]

    Raffray A R, Federici G 1997 J. Nucl. Mater. 244 85

    [9]

    Federici G, Raffray A R 1997 J. Nucl. Mater. 244 101

    [10]

    Hassanein A, Konkashbaev I 2000 Fusion Eng. Des. 51 681

    [11]

    Sizyuk V, Hassanein A 2015 Phy. Plasmas 22 013301

    [12]

    Litunovsky V N, Kuznetsov V E, Lyublin B V, Ovchinnikov I B, Titov V A, Hassanein A 2000 Fusion Eng. Des. 49 249

    [13]

    Shi Y, Miloshevsky G, Hassanein A 2011 Fusion Eng. Des. 86 155

    [14]

    Hassanein A, Konkashbaev I 2003 J. Nucl. Mater. 313 664

    [15]

    Genco F, Hassanein A 2014 Laser Part. Beams 32 217

    [16]

    Wurz H, Bazylev B, Landman I, Pestchanyi S, Gross S 2001 Fusion Eng. Des. 56 397

    [17]

    Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69

    [18]

    Coenen J W, Bazylev B, Brezinsek S 2011 J. Nucl. Mater. 415 S78

    [19]

    Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75 407

    [20]

    Bazylev B N, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363 1011

    [21]

    Igitkhanov Y, Bazylev B 2014 IEEE Trans. Plasma Sci. 42 2284

    [22]

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真2014物理学报63 035204]

    [23]

    Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28

    [24]

    Miloshevsky G V, Hassanein 2010 Nucl. Fusion 50 115005

    [25]

    Loarte A 2003 Plasma Phys. Control. Fusion 45 1549

    [26]

    Hassanein A, Sizyuk T, Konkashbaev I 2009 J. Nucl. Mater. 390 777

    [27]

    Jiang C B, Zhang Y L, Ding Z P 2007 Computational Fluid Mechanics (the first edition) (Beijing:China Power Press) p211(in Chinese)[江春波, 张永良, 丁则平2007计算流体力学(第一版)(北京:中国电力出版社)第211页]

    [28]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (2nd Ed.) (Oxford:Clarendon Press) pp89-91

    [29]

    Behrisch R 2010 J. Synch. Investig. 4 549

    [30]

    Semak V V, Damkroger B, Kempka S 1999 J. Phys. D:Appl. Phys. 32 1819

    [31]

    Udaykumar H S, Shyy W 1995 Int. J. Heat Mass Transfer 38 2057

    [32]

    Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 J. Nucl. Mater. 337 766

    [33]

    Udaykumar H S, Shyy W, Rao M M 1996 Int. J. Numer. Methods Fluids 22 691

    [34]

    Wurz H, Pestchanyi S, Bazylev B, Landman I, Kappler F 2001 J. Nucl. Mater. 290 1138

    [35]

    Elsholz F, Scholl E, Scharfenorth C, Seewald G, Eichler H J, Rosenfeld A 2005 J. Appl. Phys. 98 103516

    [36]

    Elsholz F, Scholl E, Rosenfeld A 2004 Appl. Phys. Lett. 84 4167

  • [1] Qin Chen-Chen, Mou Mao-Lin, Chen Shao-Yong. Nonlinear evolution characteristics of peeling-ballooning mode under negative triangularity. Acta Physica Sinica, 2023, 72(4): 045203. doi: 10.7498/aps.72.20222138
    [2] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Wang De-Zhen. Numerical simulation of erosion of misaligned W/Cu monoblocks caused by ITER-like type-Iedge localized modes. Acta Physica Sinica, 2023, 72(18): 185202. doi: 10.7498/aps.72.20230281
    [3] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [4] Jiang Yuan-Qi. Simulation and analysis of melting behavior of local atomic structure of refractory metals vanadium. Acta Physica Sinica, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [5] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [6] Chen Yong-Tao, Hong Ren-Kai, Chen Hao-Yu, Ren Guo-Wu. Experimental investigation of ejecta on melted Sn sample under shock loading. Acta Physica Sinica, 2016, 65(2): 026201. doi: 10.7498/aps.65.026201
    [7] Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot. Acta Physica Sinica, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [8] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [10] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [11] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Melting behavior of Au-Pd eutectic nanoparticle: A molecular dynamics study. Acta Physica Sinica, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [12] Zhang Ying-Jie, Xiao Xu-Yang, Li Yong-Qiang, Yan Yun-Hui. Molecular dynamics simulation of the influence of Cu(010) substrate on the melting of supported Co-Cu bimetallic clusters. Acta Physica Sinica, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [13] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] Chen Yong-Tao, Ren Guo-Wu, Tang Tie-Gang, Li Qing-Zhong, Wang De-Tian, Hu Hai-Bo. Ejecta on Pb surface below and above melting pressure. Acta Physica Sinica, 2012, 61(20): 206202. doi: 10.7498/aps.61.206202
    [15] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [16] Wen Yu-Hua, Sun Shi-Gang, Zhang Yang, Zhu Zi-Zhong. An atomistic simulation of structural evolution and melting characteristics of Pt nanocrystal during continuous heating. Acta Physica Sinica, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [17] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [18] Zhang Kai-Wang, Zhong Jian-Xin. Influence of defects on the melting and premelting of carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [19] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] Cehn Gang, Zhu Zhen-Gang. . Acta Physica Sinica, 2002, 51(3): 625-628. doi: 10.7498/aps.51.625
Metrics
  • Abstract views:  4562
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2016
  • Accepted Date:  24 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回