Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studies of quasi one-dimensional nanostructures at high pressures

Dong Jia-Jun Yao Ming-Guang Liu Shi-Jie Liu Bing-Bing

Citation:

Studies of quasi one-dimensional nanostructures at high pressures

Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The ultimate goals of researches of one-dimensional (1D) nanomaterials, quasi-one-dimensional atomic/molecular chains are expected to exhibit their strong quantum effects and novel optical, electrical, magnetic properties due to their unique 1D structures. At present, synthesis and manipulation of 1D atomic/molecular chains on an atomic/molecular level in a controllable way have been the frontier subject of scientific research. The 1D atomic/molecular chains, which can be stable in ambient conditions, have been prepared successfully by using a confinement template, such as carbon nanotubes (CNTs), zeolite, etc. High pressure can effectively tune the interatomic and intermolecular interactions over a broad range of conditions and thus to change the structures of materials. High pressure techniques have been recently adopted to investigate the 1D nanomaterials. In this paper, we briefly review some recent progress in the high pressure studies of 1D nanostructures, including iodine chains (I2)n confined in the 1D nanochannels of zeolite, multiwalled carbon nanotube (MWNT) arrays, and 1D carbon chains confined in CNTs. Particularly, polarized Raman spectroscopy combined with theoretical simulations has been used in the high pressure studies of 1D nanostructures. These studies reveal many interesting phenomena, including pressure-induced population increase and growth of 1D atomic/molecular chains. The underlying driven mechanisms have also been uncovered. Induced by pressure, the I2 molecules in zeolite 1D nanochannels rotates to the channel axial direction and the compression of the channel length in turn leads to a concomitant decrease of the intermolecular distance such that the iodine molecules come sufficiently close to the formation of longer (I2)n polymers. The novel polarized photoluminescence (PL) from the iodine chains and the pressure-induced PL enhancement due to the growth of 1D iodine chains under pressure. The depolarization effect vanishing in the polarized Raman spectra of compressed MWNT arrays. These are related to the pressure-induced enhancement of intertube interactions and inter/intratube sp3 bonding. The results obtained by polarized Raman spectroscopy overcome the difficulty:MWNTs have no obvious fingerprints for identifying the structural transformation under pressure. Above all, the 1D nanostructures exhibit interesting and fantastic behaviors under pressure, which deserve further investigations in this research field. In addition, polarized Raman spectroscopy is an effective tool to study the structural transformations of 1D nanomaterials at high pressures, which can be extended to the studies of other analogous 1D nanostructures under pressure.
      Corresponding author: Yao Ming-Guang, yaomg@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474121, 51320105007, 11634004).
    [1]

    Peng J, Gao W, Gupta B K, Liu Z, Rebeca R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A, Hayashi T, Zhu J Ajayan P M 2012 Nano Lett. 12 844

    [2]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [3]

    Yanson A I, Bollinger G R, van den Brom H E, Agrait N, Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [5]

    Maniwa Y, Maruka K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H 2007 Nat. Mater. 6 135

    [6]

    Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B 2007 Phys. Rev. B 76 195417

    [7]

    Manning T J, Taylor L, Purcell J, Olsen K 2003 Carbon 41 2813

    [8]

    Jung Y, Hwang S J, Kim S J 2007 J. Phys. Chem. C 111 10181

    [9]

    Liu B, Cui Q, Yu M, Zou G, Carlsten J, Wågberg T, Sundqvist B 2002 J. Phys.:Condens. Matter 14 11255

    [10]

    Guan L, Suenaga K, Shi Z, Gu Z, Iijima S 2007 Nano Lett. 7 1532

    [11]

    Terasaki O, Yamazaki K, Thomas J M, Ohsuna T, Watanabe D, Sanders J V, Barry J C 1987 Nature 330 58

    [12]

    Poborchii V V 1996 Chem. Phys. Lett. 251 230

    [13]

    Ye J T, Tang Z K, Siu G G 2006 Appl. Phys. Lett. 88 073114

    [14]

    Ye J T, Iwasa Y, Tang Z K 2011 Phys. Rev. B 83 193409

    [15]

    Hu J, Wang D, Guo W, Du S, Tang Z K 2012 J. Phys. Chem. C 116 4423

    [16]

    Yao M, Cui W, Du M, Xiao J, Yang X, Liu S, Liu R, Wang F, Cui T, Sundqvist B, Liu B 2015 Adv. Mater. 27 3962

    [17]

    Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B 2014 Adv. Mater. 26 7257

    [18]

    Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B, Mao H K 2009 PNAS 106 22135

    [19]

    Venkateswaran U D, Brandsen E A, Katakowski M E, Harutyunyan A, Chen G, Loper A L, Eklund P C 2002 Phys. Rev. B 65 054102

    [20]

    Yang X G,Wu Q L 2008 Raman Spectroscopy Analysis and Application (Beijing:National Defence Industry Press) pp7, 8(in Chinese)[杨序钢, 吴琪琳2008拉曼光谱的分析与应用(北京:国防工业出版社)第7, 8页]

    [21]

    Zhu Z Y, Gu R A, Lu T H 2008 The Application of Raman Spectroscopy in Chemistry (Shenyang:Northeastern University Press) pp26-31(in Chinese)[朱自营, 顾仁傲, 陆天虹2008拉曼光谱在化学中的应用(沈阳:东北大学出版社)第26–31页]

    [22]

    Duesberg G S, Loa I, Burghard M, Syassen K, Roth S 2000 Phys. Rev. Lett. 85 5436

    [23]

    Magaa R J, Lannin J S 1985 Phys. Rev. B 32 3819

    [24]

    Shanabrook B V, Lannin J S, Hisatsune I C 1981 Phys. Rev. Lett. 46 130

    [25]

    Kiefer W, Bernstein H J 1972 Chem. Phys. Lett. 16 5

    [26]

    L H, Yao M, Li Q, Liu R, Liu B, Lu S, Jiang L, Cui W, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B 2012 J. Appl. Phys. 111 112615

    [27]

    Takemura K, Minomura S, Shimomura O, Fujii Y, Axe J D 1982 Phys. Rev. B 26 998

    [28]

    Reichlin R, McMahan A K, Ross M, Martin S, Hu J, Hemley R J, Mao H K, Wu Y 1994 Phys. Rev. B 49 3725

    [29]

    Fujii Y, Hase K, Hamaya N, Ohishi Y, Onodera A, Shimomura O, Takemura K 1987 Phys. Rev. Lett. 58 796

    [30]

    Fujii Y, Hase K, Ohishi Y, Hamaya N, Onodera A 1986 Solid State Commun. 59 85

    [31]

    Yao M, Wang T, Yao Z, Duan D, Chen S, Liu Z, Liu R, Lu S, Yuan Y, Zou B, Cui T, Liu B 2013 J. Phys. Chem. C 117 25052

    [32]

    Olijnyk H, Li W, Wokaun A 1994 Phys. Rev. B 50 712

    [33]

    Kume T, Hiraoka T, Ohya Y, Sasaki S, Shimizu H 2005 Phys. Rev. Lett. 94 065506

    [34]

    Alvarez L, Bantignies J L, Le Parc R, Aznar R, Sauvajol J L, Merlen A, Machon D, San Miguel A 2010 Phys. Rev. B 82 205403

    [35]

    Vladimir V P, Alexander V K, Jrgen C, Victor V Z, Kazunobu T 1999 Phys. Rev. Lett. 82 1955

    [36]

    Byl O, Liu J, Wang Y, Yim W, Johnson J K, Yates J T J 2006 J. Am. Chem. Soc. 128 12090

    [37]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [38]

    Chen S, Yao M, Yuan Y, Ma F, Liu Z, Liu R, Cui W, Yang X, Liu B, Zou B, Cui T, Liu B 2014 Phys. Chem. Chem. Phys. 16 8301

    [39]

    Zhai J P, Li I L, Ruan S C, Lee H F, Tang Z K 2008 Appl. Phys. Lett. 92 043117

    [40]

    Zhai J P, Lee H F, Li I L, Ruan S C, Tang Z K 2008 Nanotechnology 19 175604

    [41]

    Jiang F Y, Liu R C 2007 J. Phys. Chem. Solids 68 1552

    [42]

    Yuan Y, Yao M, Chen S, Liu S, Yang X, Zhang W, Yao Z, Liu R, Liu B, Liu B 2016 Nanoscale 8 1456

    [43]

    Sercel P C, Vahala K J 1990 Appl. Phys. Lett. 57 545

    [44]

    Sercel P C, Vahala K J 1991 Phys. Rev. B 44 5681

    [45]

    McIntyre C R, Sham L J 1992 Phys. Rev. B 45 9443

    [46]

    Persson M P, Xu H Q 2004 Phys. Rev. B 70 161310

    [47]

    Califano M, Zunger A 2004 Phys. Rev. B 70 165317

    [48]

    Maslov A V, Ning C Z 2005 Phys. Rev. B 72 161310

    [49]

    Ruda H E, Shik A 2005 Phys. Rev. B 72 115308

    [50]

    Ruda H E, Shik A 2006 J. Appl. Phys. 100 024314

    [51]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [52]

    Dresselhaus M S Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano Lett. 10 751

    [53]

    Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, Sundqvist B 2008 Phys. Rev. B 78 205411

    [54]

    Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L 2008 Phys. Rev. B 77 125418

    [55]

    Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S, Souza Filho A G 2014 J. Phys. Chem. C 118 8153

    [56]

    Aguiar A L, Barros E B, Capaz R B, Souza Filho A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, San-Miguel A 2011 J. Phys. Chem. C 115 5378

    [57]

    Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos K S, Takenobu T, Iwasa Y, Kataura H, Ves S, Kourouklis G A 2005 Phys. Rev. B 71 125404

    [58]

    Tang D S, Bao Z X, Wang L J, Chen L C, Sun L F, Liu Z Q, Zhou W Y, Xie S S 2000 J. Phys. Chem. Solids 61 1175

    [59]

    Peters M J, McNeil L E, Lu J P, Kahn D 2000 Phys. Rev. B 61 5939

    [60]

    Thomsen C, Reich S, Jantoljak H, Loa I, Syassen K, Burghard M, Duesberg G S, Roth S 1999 Appl. Phys. A 69 309

    [61]

    Schindler T L, Vohra Y K 1995 J. Phys.:Condens. Matter 7 637

    [62]

    Hanfland M, Beister H, Syassen K 1989 Phys. Rev. B 39 12598

    [63]

    Puech P, Hubel H, Dunstan D J, Bacsa R R, Laurent C Bacsa W S 2004 Phys. Rev. Lett. 93 095506

    [64]

    Yang X, Yao M, Lu W, Chen S, Du M, Zhu L, Li H, Liu R, Cui T, Sundqvist B, Liu B 2015 J. Phys. Chem. C 119 27759

    [65]

    Hwang J, Gommans H H, Ugawa A, Tashiro H, Haggenmueller R, Winey K I, Fischer J E, Tanner D B 2000 Phys. Rev. B 62 13310

    [66]

    Ren W, Li F, Cheng H M 2005 Phys. Rev. B 71 115428

    [67]

    Marinopoulos A G, Reining L, Rubio A, Vast N 2003 Phys. Rev. Lett. 91 046402

    [68]

    Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, Hemley R J 2003 Science 302 425

    [69]

    Ni C, Bandaru P R 2009 Carbon 47 2898

    [70]

    Rao A M, Jorio A, Pimenta M A, Dantas M S S, Saito R, Dresselhaus G, Dresselhaus M S 2000 Phys. Rev. Lett. 84 1820

    [71]

    Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075

    [72]

    Kertesz M, Yang S 2009 Phys. Chem. Chem. Phys. 11 425

    [73]

    Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, Shinohara H 2006 Chem. Phy. Lett. 428 356

    [74]

    Kitaura R, Imazu N, Kobayashi K, Shinohara H 2008 Nano Lett. 8 693

    [75]

    Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N 2011 Nat. Mater. 10 687

    [76]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967

    [77]

    Johnson T, Walton D 1972 Tetrahedron 28 5221

    [78]

    Gibtner T, Hampel F, Gisselbrecht J, Hirsch A 2002 Chem. Eur. J. 8 408

    [79]

    Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [80]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvão D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669

    [81]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T 2016 Nat. Mater. 15 634

  • [1]

    Peng J, Gao W, Gupta B K, Liu Z, Rebeca R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A, Hayashi T, Zhu J Ajayan P M 2012 Nano Lett. 12 844

    [2]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [3]

    Yanson A I, Bollinger G R, van den Brom H E, Agrait N, Ruitenbeek J M 1998 Nature 395 783

    [4]

    Ohnishi H, Kondo Y, Takayanagi K 1998 Nature 395 780

    [5]

    Maniwa Y, Maruka K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H 2007 Nat. Mater. 6 135

    [6]

    Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B 2007 Phys. Rev. B 76 195417

    [7]

    Manning T J, Taylor L, Purcell J, Olsen K 2003 Carbon 41 2813

    [8]

    Jung Y, Hwang S J, Kim S J 2007 J. Phys. Chem. C 111 10181

    [9]

    Liu B, Cui Q, Yu M, Zou G, Carlsten J, Wågberg T, Sundqvist B 2002 J. Phys.:Condens. Matter 14 11255

    [10]

    Guan L, Suenaga K, Shi Z, Gu Z, Iijima S 2007 Nano Lett. 7 1532

    [11]

    Terasaki O, Yamazaki K, Thomas J M, Ohsuna T, Watanabe D, Sanders J V, Barry J C 1987 Nature 330 58

    [12]

    Poborchii V V 1996 Chem. Phys. Lett. 251 230

    [13]

    Ye J T, Tang Z K, Siu G G 2006 Appl. Phys. Lett. 88 073114

    [14]

    Ye J T, Iwasa Y, Tang Z K 2011 Phys. Rev. B 83 193409

    [15]

    Hu J, Wang D, Guo W, Du S, Tang Z K 2012 J. Phys. Chem. C 116 4423

    [16]

    Yao M, Cui W, Du M, Xiao J, Yang X, Liu S, Liu R, Wang F, Cui T, Sundqvist B, Liu B 2015 Adv. Mater. 27 3962

    [17]

    Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B 2014 Adv. Mater. 26 7257

    [18]

    Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B, Mao H K 2009 PNAS 106 22135

    [19]

    Venkateswaran U D, Brandsen E A, Katakowski M E, Harutyunyan A, Chen G, Loper A L, Eklund P C 2002 Phys. Rev. B 65 054102

    [20]

    Yang X G,Wu Q L 2008 Raman Spectroscopy Analysis and Application (Beijing:National Defence Industry Press) pp7, 8(in Chinese)[杨序钢, 吴琪琳2008拉曼光谱的分析与应用(北京:国防工业出版社)第7, 8页]

    [21]

    Zhu Z Y, Gu R A, Lu T H 2008 The Application of Raman Spectroscopy in Chemistry (Shenyang:Northeastern University Press) pp26-31(in Chinese)[朱自营, 顾仁傲, 陆天虹2008拉曼光谱在化学中的应用(沈阳:东北大学出版社)第26–31页]

    [22]

    Duesberg G S, Loa I, Burghard M, Syassen K, Roth S 2000 Phys. Rev. Lett. 85 5436

    [23]

    Magaa R J, Lannin J S 1985 Phys. Rev. B 32 3819

    [24]

    Shanabrook B V, Lannin J S, Hisatsune I C 1981 Phys. Rev. Lett. 46 130

    [25]

    Kiefer W, Bernstein H J 1972 Chem. Phys. Lett. 16 5

    [26]

    L H, Yao M, Li Q, Liu R, Liu B, Lu S, Jiang L, Cui W, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B 2012 J. Appl. Phys. 111 112615

    [27]

    Takemura K, Minomura S, Shimomura O, Fujii Y, Axe J D 1982 Phys. Rev. B 26 998

    [28]

    Reichlin R, McMahan A K, Ross M, Martin S, Hu J, Hemley R J, Mao H K, Wu Y 1994 Phys. Rev. B 49 3725

    [29]

    Fujii Y, Hase K, Hamaya N, Ohishi Y, Onodera A, Shimomura O, Takemura K 1987 Phys. Rev. Lett. 58 796

    [30]

    Fujii Y, Hase K, Ohishi Y, Hamaya N, Onodera A 1986 Solid State Commun. 59 85

    [31]

    Yao M, Wang T, Yao Z, Duan D, Chen S, Liu Z, Liu R, Lu S, Yuan Y, Zou B, Cui T, Liu B 2013 J. Phys. Chem. C 117 25052

    [32]

    Olijnyk H, Li W, Wokaun A 1994 Phys. Rev. B 50 712

    [33]

    Kume T, Hiraoka T, Ohya Y, Sasaki S, Shimizu H 2005 Phys. Rev. Lett. 94 065506

    [34]

    Alvarez L, Bantignies J L, Le Parc R, Aznar R, Sauvajol J L, Merlen A, Machon D, San Miguel A 2010 Phys. Rev. B 82 205403

    [35]

    Vladimir V P, Alexander V K, Jrgen C, Victor V Z, Kazunobu T 1999 Phys. Rev. Lett. 82 1955

    [36]

    Byl O, Liu J, Wang Y, Yim W, Johnson J K, Yates J T J 2006 J. Am. Chem. Soc. 128 12090

    [37]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [38]

    Chen S, Yao M, Yuan Y, Ma F, Liu Z, Liu R, Cui W, Yang X, Liu B, Zou B, Cui T, Liu B 2014 Phys. Chem. Chem. Phys. 16 8301

    [39]

    Zhai J P, Li I L, Ruan S C, Lee H F, Tang Z K 2008 Appl. Phys. Lett. 92 043117

    [40]

    Zhai J P, Lee H F, Li I L, Ruan S C, Tang Z K 2008 Nanotechnology 19 175604

    [41]

    Jiang F Y, Liu R C 2007 J. Phys. Chem. Solids 68 1552

    [42]

    Yuan Y, Yao M, Chen S, Liu S, Yang X, Zhang W, Yao Z, Liu R, Liu B, Liu B 2016 Nanoscale 8 1456

    [43]

    Sercel P C, Vahala K J 1990 Appl. Phys. Lett. 57 545

    [44]

    Sercel P C, Vahala K J 1991 Phys. Rev. B 44 5681

    [45]

    McIntyre C R, Sham L J 1992 Phys. Rev. B 45 9443

    [46]

    Persson M P, Xu H Q 2004 Phys. Rev. B 70 161310

    [47]

    Califano M, Zunger A 2004 Phys. Rev. B 70 165317

    [48]

    Maslov A V, Ning C Z 2005 Phys. Rev. B 72 161310

    [49]

    Ruda H E, Shik A 2005 Phys. Rev. B 72 115308

    [50]

    Ruda H E, Shik A 2006 J. Appl. Phys. 100 024314

    [51]

    Baughman R H, Zakhidov A A, de Heer W A 2002 Science 297 787

    [52]

    Dresselhaus M S Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano Lett. 10 751

    [53]

    Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, Sundqvist B 2008 Phys. Rev. B 78 205411

    [54]

    Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L 2008 Phys. Rev. B 77 125418

    [55]

    Alencar R S, Aguiar A L, Paschoal A R, Freire P T C, Kim Y A, Muramatsu H, Endo M, Terrones H, Terrones M, San-Miguel A, Dresselhaus M S, Souza Filho A G 2014 J. Phys. Chem. C 118 8153

    [56]

    Aguiar A L, Barros E B, Capaz R B, Souza Filho A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, San-Miguel A 2011 J. Phys. Chem. C 115 5378

    [57]

    Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos K S, Takenobu T, Iwasa Y, Kataura H, Ves S, Kourouklis G A 2005 Phys. Rev. B 71 125404

    [58]

    Tang D S, Bao Z X, Wang L J, Chen L C, Sun L F, Liu Z Q, Zhou W Y, Xie S S 2000 J. Phys. Chem. Solids 61 1175

    [59]

    Peters M J, McNeil L E, Lu J P, Kahn D 2000 Phys. Rev. B 61 5939

    [60]

    Thomsen C, Reich S, Jantoljak H, Loa I, Syassen K, Burghard M, Duesberg G S, Roth S 1999 Appl. Phys. A 69 309

    [61]

    Schindler T L, Vohra Y K 1995 J. Phys.:Condens. Matter 7 637

    [62]

    Hanfland M, Beister H, Syassen K 1989 Phys. Rev. B 39 12598

    [63]

    Puech P, Hubel H, Dunstan D J, Bacsa R R, Laurent C Bacsa W S 2004 Phys. Rev. Lett. 93 095506

    [64]

    Yang X, Yao M, Lu W, Chen S, Du M, Zhu L, Li H, Liu R, Cui T, Sundqvist B, Liu B 2015 J. Phys. Chem. C 119 27759

    [65]

    Hwang J, Gommans H H, Ugawa A, Tashiro H, Haggenmueller R, Winey K I, Fischer J E, Tanner D B 2000 Phys. Rev. B 62 13310

    [66]

    Ren W, Li F, Cheng H M 2005 Phys. Rev. B 71 115428

    [67]

    Marinopoulos A G, Reining L, Rubio A, Vast N 2003 Phys. Rev. Lett. 91 046402

    [68]

    Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, Hemley R J 2003 Science 302 425

    [69]

    Ni C, Bandaru P R 2009 Carbon 47 2898

    [70]

    Rao A M, Jorio A, Pimenta M A, Dantas M S S, Saito R, Dresselhaus G, Dresselhaus M S 2000 Phys. Rev. Lett. 84 1820

    [71]

    Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075

    [72]

    Kertesz M, Yang S 2009 Phys. Chem. Chem. Phys. 11 425

    [73]

    Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, Shinohara H 2006 Chem. Phy. Lett. 428 356

    [74]

    Kitaura R, Imazu N, Kobayashi K, Shinohara H 2008 Nano Lett. 8 693

    [75]

    Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N 2011 Nat. Mater. 10 687

    [76]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967

    [77]

    Johnson T, Walton D 1972 Tetrahedron 28 5221

    [78]

    Gibtner T, Hampel F, Gisselbrecht J, Hirsch A 2002 Chem. Eur. J. 8 408

    [79]

    Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [80]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvão D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669

    [81]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T 2016 Nat. Mater. 15 634

  • [1] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure. Acta Physica Sinica, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [4] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei. Flux controllable pumping of water molecules in a double-walled carbon nanotube. Acta Physica Sinica, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [7] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [8] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [9] Peng De-Feng, Jiang Wu-Gui, Peng Chuan. Steered molecular dynamics simulation of peeling a carbon nanotube on silicon substrate. Acta Physica Sinica, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [10] Xu Kui, Wang Qing-Song, Tan Bin, Chen Ming-Xuan, Miao Ling, Jiang Jian-Jun. Molecular dynamic of selectivity and permeation based on deformed carbon nanotube. Acta Physica Sinica, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [11] Zuo Xue-Yun, Li Zhong-Qiu, Wang Wei, Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Nanowelding of contact between carbon nanotubesand gold electrodes. Acta Physica Sinica, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [12] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [13] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] Ma Li, Gao Yong. Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta Physica Sinica, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [15] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] Shao Guang-Jie, Qin Xiu-Juan, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu. Grain fragmentation and property modification of nanocrystalline ZnO under high pressure. Acta Physica Sinica, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [17] Cai Jian-Zhen, Zhu Hong-Wei, Wu De-Hai, Liu Feng, Lü Li. Study of single-walled carbon nanotube's differential conductance in high magnetic field under high pressure. Acta Physica Sinica, 2006, 55(12): 6585-6588. doi: 10.7498/aps.55.6585
    [18] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [19] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
Metrics
  • Abstract views:  6064
  • PDF Downloads:  288
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2016
  • Accepted Date:  08 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回