Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the stability and photoelectric properties of APbI3 perovskite

Liu Na Wei Yang Ma Xin-Guo Zhu Lin Xu Guo-Wang Chu Liang Huang Chu-Yun

Citation:

Theoretical study on the stability and photoelectric properties of APbI3 perovskite

Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The rapid development of organic-inorganic hybrid perovskite solar cells has recently attracted the worldwide attention because their power conversion efficiency has risen from 4% to higher than 20% within just six years. It is well known that the perovskite materials with APbI3 crystal structure have a 3D framework of corner-sharing PbI6 octahedra, in which each Pb atom bonds with six I atoms, and the A cations fill in the octahedral interstices. At present, a lot of researches have focused on the synthesis and doping modification of perovskite materials. However, it is hard to detect directly the weak interactions between A cations and PbI6 skeleton in the APbI3 crystal structure through experiments, which have effect on the structural stability and electronic properties. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions, the stability, electronic structures and optical properties of APbI3 (A denotes Cs+, NH4+, MA+, FA+) were investigated by the plane-wave ultra soft pseudo potentials. Two dispersion corrections were taken into account in the weak interactions between A cations and PbI6 skeleton in the APbI3 crystal structure, respectively. The results show that the type and size of cations affect the distortion of PbI framework, indicating that the larger the radius of the A cation is, the stronger the interaction between the A cation and the PbI framework is. Further, it is identified that after geometry relaxation, the orientation of A cations (A denotes NH4+, MA+, FA+) is easy to change, and the PbI frameworks present structural distortion. CsPbI3 is more stable energetically than other three kinds of perovskite materials. For the PbI6 octahedra, the large dipole moments of 0.23D and 0.32D for the generalized-gradient approximation method or 0.28D and 0.29D for the local-density approximation method are also present in MAPbI3 and FAPbI3, respectively. In addition, the energy band structures, which affect the generation and migration of photon-generated carriers and optical properties, will alter with the structural distortion of PbI frameworks. By analyzing the energy band structures and corresponding density of states, we find that four systems have similar band structures near the Fermi energy, namely, the top of valance band is mainly contributed by I 5p orbitals, while the bottom of conduction band is dominated by Pb 6p orbitals and partly contributed by I 5p orbitals. A little difference of their electronic structures and optical absorption spectra originates from the distortion of PbI6 octahedra in APbI3 crystal structures. It is noted that the contribution of the ions Cs+ and FA+ on the top of valance band is slightly larger than that of the ions NH4+ and MA+. Compared with other three kinds of perovskite materials, CsPbI3 presents the narrowest direct band gap, the lowest effective carrier mass and excellent visible-light and infrared absorption. The results may provide some theoretical guidance for further research on perovskite materials in the application of solar cells.
      Corresponding author: Ma Xin-Guo, maxg2013@sohu.com;chuyunh@163.com ; Huang Chu-Yun, maxg2013@sohu.com;chuyunh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51472081), the Foundation of Hubei University of Technology for High-Level Talents (Grant No. GCRC13014), the Leading Plan of Green Industry (Grant No. YXQN2016005), and the Development Founds of Hubei Collaborative Innovation Center (Grant Nos. HBSKFZD2014003, HBSKFZD2014011, HBSKFZD2015004).
    [1]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014Science 345 295

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grtzel M, Park N G 2012Sci.Rep. 2 591

    [3]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015Acta Phys.Sin. 64 038401(in Chinese)[王福芝, 谭占鳌, 戴松元, 李永舫2015物理学报64 038401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009J.Am.Chem.Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015Science 348 1234

    [6]

    Zhang D F, Zheng L L, Ma Y Z, Wang S F, Bian Z Q, Huang C H, Gong Q H, Xiao L X 2015Acta Phys.Sin. 64 038803(in Chinese)[张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新2015物理学报64 038803]

    [7]

    Cappel U B, Daeneke T, Bach U 2012Nano Lett. 12 4925

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395

    [9]

    Knop O, Wasylishen R E, White M A, Oort M J M V 1990Can.J.Chem. 68 412

    [10]

    Lee J W, Seol D J, Cho A N 2014Adv.Mater. 26 4991

    [11]

    Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016J.Am.Chem.Soc. 138 5535

    [12]

    Pang S P, Hu H, Zhang J L, Lv S L, Yu Y M, Wei F, Qin T S, Xu H X, Liu Z L, Cui G L 2014Chem.Mater. 26 1485

    [13]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014Nano Energy 7 80

    [14]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grtzel M 2016Energy Environ.Sci. 9 1989

    [15]

    Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Grtzel M, White T J 2013J.Mater.Chem.A 1 5628

    [16]

    Motta C, Mellouhi F E, Kais S, Tabet N, Alharbi F, Sanvito S 2015Nat.Commun. 6 7026

    [17]

    Filippetti A, Mattoni A 2014Phys.Rev.B 89 12503

    [18]

    Mosconi E, Amat A, Nazeeruddin M K, Grtzel M, De Angelis F 2013J.Phys.Chem.C 117 13902

    [19]

    Geng W, Zhang L, Zhang Y N, Lau W M, Liu L M 2014J.Phys.Chem.C 118 19565

    [20]

    Wang Y, Gould T, Dobson J F, Zhang H M, Yang H G, Yao X D, Zhao H J 2014J.Phys.Chem.Chem.Phys. 16 1424

    [21]

    Umari P, Mosconi E, De Angelis F 2014Sci.Rep. 4 4467

    [22]

    Kawamura Y, Mashiyama H, Hasebe K 2002J.Phys.Soc.Jpn. 71 1694

    [23]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [24]

    Tkatchenko A, Scheffler M 2009Phys.Rev.Lett. 102 073005

    [25]

    Ortmann F, Bechstedt F, Schmidt W G 2006Phys.Rev.B 73 205101

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002J.Phys:Condens.Matter. 14 2717

    [28]

    Chung L, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012Nature 485 486

    [29]

    Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S, Tritt T M 2005Phys.Rev.B 72 125202

    [30]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003Solid State Commun. 127 619

    [31]

    Schulz P E, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014Energy Environ.Sci. 7 1377

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S 2015Nature 517 476

    [33]

    Lee C, Hong J, Stroppa A, Whangbo M H, Shim J H 2015RSC Advances 5 78701

  • [1]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014Science 345 295

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grtzel M, Park N G 2012Sci.Rep. 2 591

    [3]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015Acta Phys.Sin. 64 038401(in Chinese)[王福芝, 谭占鳌, 戴松元, 李永舫2015物理学报64 038401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009J.Am.Chem.Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015Science 348 1234

    [6]

    Zhang D F, Zheng L L, Ma Y Z, Wang S F, Bian Z Q, Huang C H, Gong Q H, Xiao L X 2015Acta Phys.Sin. 64 038803(in Chinese)[张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新2015物理学报64 038803]

    [7]

    Cappel U B, Daeneke T, Bach U 2012Nano Lett. 12 4925

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395

    [9]

    Knop O, Wasylishen R E, White M A, Oort M J M V 1990Can.J.Chem. 68 412

    [10]

    Lee J W, Seol D J, Cho A N 2014Adv.Mater. 26 4991

    [11]

    Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016J.Am.Chem.Soc. 138 5535

    [12]

    Pang S P, Hu H, Zhang J L, Lv S L, Yu Y M, Wei F, Qin T S, Xu H X, Liu Z L, Cui G L 2014Chem.Mater. 26 1485

    [13]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014Nano Energy 7 80

    [14]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grtzel M 2016Energy Environ.Sci. 9 1989

    [15]

    Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Grtzel M, White T J 2013J.Mater.Chem.A 1 5628

    [16]

    Motta C, Mellouhi F E, Kais S, Tabet N, Alharbi F, Sanvito S 2015Nat.Commun. 6 7026

    [17]

    Filippetti A, Mattoni A 2014Phys.Rev.B 89 12503

    [18]

    Mosconi E, Amat A, Nazeeruddin M K, Grtzel M, De Angelis F 2013J.Phys.Chem.C 117 13902

    [19]

    Geng W, Zhang L, Zhang Y N, Lau W M, Liu L M 2014J.Phys.Chem.C 118 19565

    [20]

    Wang Y, Gould T, Dobson J F, Zhang H M, Yang H G, Yao X D, Zhao H J 2014J.Phys.Chem.Chem.Phys. 16 1424

    [21]

    Umari P, Mosconi E, De Angelis F 2014Sci.Rep. 4 4467

    [22]

    Kawamura Y, Mashiyama H, Hasebe K 2002J.Phys.Soc.Jpn. 71 1694

    [23]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [24]

    Tkatchenko A, Scheffler M 2009Phys.Rev.Lett. 102 073005

    [25]

    Ortmann F, Bechstedt F, Schmidt W G 2006Phys.Rev.B 73 205101

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002J.Phys:Condens.Matter. 14 2717

    [28]

    Chung L, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012Nature 485 486

    [29]

    Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S, Tritt T M 2005Phys.Rev.B 72 125202

    [30]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003Solid State Commun. 127 619

    [31]

    Schulz P E, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014Energy Environ.Sci. 7 1377

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S 2015Nature 517 476

    [33]

    Lee C, Hong J, Stroppa A, Whangbo M H, Shim J H 2015RSC Advances 5 78701

  • [1] Yuan Wen-Ling, Yao Bi-Xia, Li Xi, Hu Shun-Bo, Ren Wei. First principles study on structural stability, mechanical and thermodynamic properties of γ'-Co3(V, M) (M = Ti, Ta) phase. Acta Physica Sinica, 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] Shen Ding, Liu Yao-Han, Tang Shu-Wei, Dong Wei, Sun Wen, Wang Lai-Gui, Yang Shao-Bin. First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene. Acta Physica Sinica, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] Luo Zui-Fen, Chen Xing-Yuan, Lin Shi-Yuan, Zhao Yu-Jun. Theoretical study of structural stabilities of BiXO3 (X= Cr, Mn, Fe, Ni). Acta Physica Sinica, 2013, 62(5): 053102. doi: 10.7498/aps.62.053102
    [12] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [13] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] Liu Chun-Hua, Ouyang Chu-Ying, Ji Ying-Hua. First principles investigation of electronic structuresand stabilities of Mg2Ni and its complex hydrides. Acta Physica Sinica, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [16] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] Shen Han-Xin, Cai Na-Li, Wen Yu-Hua, Zhu Zi-Zhong. Structural stability and electronic structures of Nb atomic chains. Acta Physica Sinica, 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
Metrics
  • Abstract views:  6834
  • PDF Downloads:  857
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2016
  • Accepted Date:  04 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回