Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of initial irradiation damage in aluminum

Gao Yun-Liang Zhu Yuan-Jiang Li Jin-Ping

Citation:

First-principle study of initial irradiation damage in aluminum

Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aluminum and its alloy play an important role in nuclear industry, where irradiation damage continually occurs and significantly affects the structures and physical properties of materials: especially long-term irradiation can lead to the formation of helium bubbles and holes in the substrate. During the initial irradiation damage, point defects are the major defects.Studying the point defects is of great significance for understanding the irradiation damages and the mechanism of defect development. In this paper, three possible intrinsic point defects (Al vacancies, Al tetrahedral interstitials and Al octahedral interstitials) and three possible helium defects (substituted He, He tetrahedral interstitials and He octahedral interstitials) produced by initial irradiation damage in aluminum are studied by the first-principle plane wave pseudo-potential method within the framework of density functional theory. The formation of the defects and their effects on the stability of the system are compared through crystal structure, formation energy and binding energy. Besides, the electronic mechanism is analyzed from the point of view of density of states (DOS), partial density of states (PDOS), electron density difference and charge populations. It is shown that for the same type of defects, the greater the lattice distortions, the lower the stability of system is and the more difficult the formation of defects. For the formation of the same type of defects, the extent of difficulty in forming defects is in the following order: vacancies (substituted atoms), octahedral interstitials, and tetrahedral interstitials. However, for the same sites, although the intrinsic defects cause greater lattice distortions than the helium defects, they are in fact relatively easier to form, which indicates that the difference between the bonding performances of Al and He plays a leading role in determining the interaction between defects and the aluminum substrate. Besides, the results of binding energy and optimization show that interstitials readily combine with vacancies, and Al has stronger combining ability than He. On the whole, interstitials mainly exist in octahedral interstices, and both octahedral Al and He can cause some electrons to transfer to higher energy levels, lead to some weakening of the covalent interaction between atoms nearest to the interstitials, and eventually reduce the stability of the system. And further study shows that the bond between interstitial Al and its nearest atom features a strongly covalent state, while the interaction between He and its nearest atom is dominated by van der Walls force with weak ionic bond, which accounts for the lower stability of system doped with helium defects.
      Corresponding author: Zhu Yuan-Jiang, zhu_yuanjiang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472280, 51272298).
    [1]

    Vigneron J P, Lousse V, Lucas A A, Obtaka K 2003J.Opt.Soc.Am.B 20 2297

    [2]

    Katoh Y, Ando M, Kohyama A 2003J.Nucl.Mater. 323 251

    [3]

    Yang L, Zu X T, Xiao H Y 2006Appl.Phys.Lett. 88 091915

    [4]

    Jiao Z, Ham N, Was G S 2007J.Nucl.Mater. 367-370 440

    [5]

    Yu J N 2007Effect of Material Irradiated(Beijing:Chemical Industry Press) p5(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第5页]

    [6]

    Chen C A 2003Ph.D.Dissertation(Mianyang:China Academy of Engineering Physics)(in Chinese)[陈长安2003博士学位论文(绵阳:中国工程物理研究院)]

    [7]

    Shahzad K, Qureshi F J, Taj J, Awais A, Hussain J, Akram W, Honey S, Ahmad I, Malik M 2016Nucl.Sci.Tech. 27 33

    [8]

    Li J, Gao J, Wan F R 2016Acta Phys.Sin. 65 026102(in Chinese)[李杰, 高进, 万发荣2016物理学报65 026102]

    [9]

    Liu X K, Liu Y, Qian D Z, Zhen Z 2010Acta Phys.Sin. 59 6450(in Chinese)[刘显坤, 刘颖, 钱达志, 郑洲2010物理学报59 6450]

    [10]

    Zeb M A, Kohanoff J, Portal D S, Artacho E 2013Nucl.Instr.Meth.Phys.Res.B 303 59

    [11]

    Bringa E M, Wirth B D, Caturla M J, Stolken J, Kalantar D 2003Nucl.Instr.Meth.Phys.Res.B 202 56

    [12]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008Acta Phys.Sin. 57 3703(in Chinese)[王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮2008物理学报57 3703]

    [13]

    Chen J, Long Y 2012Eur.Phys.J.B 85 345

    [14]

    Liu C S, Nicholas K, Demos S G, Radousky H B 2003Phys.Rev.Lett. 91 015505

    [15]

    Liang L, Ma M W, Tan X H, Xiang W, Wang Y, Cheng Y L 2015Acta Metall.Sin. 51 107(in Chinese)[梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林2015金属学报51 107]

    [16]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006J.Phys.:Condens.Matter 18 1495

    [17]

    Ceperley D M, Alder B J 1980Phys.Rev.Lett. 45 566

    [18]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996Phys.Rev.Lett. 77 3865

    [20]

    Pfrommer B G, Cote M, Louie S G 1997J.Comput.Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [22]

    van de Walle C G, Neugebauer J 2004J.Appl.Phys.Rev. 95 3851

    [23]

    Mantina M, Wang Y 2008Phys.Rev.Lett. 100 215901

    [24]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y 2007Solid State Commun. 142 114

    [25]

    Wei Q J 1990Electronic Micro-analysis of Materials(Beijing:Metallurgy Industry Press) p186(in Chinese)[魏全金1990材料电子显微分析(北京:冶金工业出版社)第186页]

    [26]

    Mulliken R S 1955J.Chem.Phys. 23 1841

  • [1]

    Vigneron J P, Lousse V, Lucas A A, Obtaka K 2003J.Opt.Soc.Am.B 20 2297

    [2]

    Katoh Y, Ando M, Kohyama A 2003J.Nucl.Mater. 323 251

    [3]

    Yang L, Zu X T, Xiao H Y 2006Appl.Phys.Lett. 88 091915

    [4]

    Jiao Z, Ham N, Was G S 2007J.Nucl.Mater. 367-370 440

    [5]

    Yu J N 2007Effect of Material Irradiated(Beijing:Chemical Industry Press) p5(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第5页]

    [6]

    Chen C A 2003Ph.D.Dissertation(Mianyang:China Academy of Engineering Physics)(in Chinese)[陈长安2003博士学位论文(绵阳:中国工程物理研究院)]

    [7]

    Shahzad K, Qureshi F J, Taj J, Awais A, Hussain J, Akram W, Honey S, Ahmad I, Malik M 2016Nucl.Sci.Tech. 27 33

    [8]

    Li J, Gao J, Wan F R 2016Acta Phys.Sin. 65 026102(in Chinese)[李杰, 高进, 万发荣2016物理学报65 026102]

    [9]

    Liu X K, Liu Y, Qian D Z, Zhen Z 2010Acta Phys.Sin. 59 6450(in Chinese)[刘显坤, 刘颖, 钱达志, 郑洲2010物理学报59 6450]

    [10]

    Zeb M A, Kohanoff J, Portal D S, Artacho E 2013Nucl.Instr.Meth.Phys.Res.B 303 59

    [11]

    Bringa E M, Wirth B D, Caturla M J, Stolken J, Kalantar D 2003Nucl.Instr.Meth.Phys.Res.B 202 56

    [12]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008Acta Phys.Sin. 57 3703(in Chinese)[王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮2008物理学报57 3703]

    [13]

    Chen J, Long Y 2012Eur.Phys.J.B 85 345

    [14]

    Liu C S, Nicholas K, Demos S G, Radousky H B 2003Phys.Rev.Lett. 91 015505

    [15]

    Liang L, Ma M W, Tan X H, Xiang W, Wang Y, Cheng Y L 2015Acta Metall.Sin. 51 107(in Chinese)[梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林2015金属学报51 107]

    [16]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006J.Phys.:Condens.Matter 18 1495

    [17]

    Ceperley D M, Alder B J 1980Phys.Rev.Lett. 45 566

    [18]

    Vanderbilt D 1990Phys.Rev.B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996Phys.Rev.Lett. 77 3865

    [20]

    Pfrommer B G, Cote M, Louie S G 1997J.Comput.Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [22]

    van de Walle C G, Neugebauer J 2004J.Appl.Phys.Rev. 95 3851

    [23]

    Mantina M, Wang Y 2008Phys.Rev.Lett. 100 215901

    [24]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y 2007Solid State Commun. 142 114

    [25]

    Wei Q J 1990Electronic Micro-analysis of Materials(Beijing:Metallurgy Industry Press) p186(in Chinese)[魏全金1990材料电子显微分析(北京:冶金工业出版社)第186页]

    [26]

    Mulliken R S 1955J.Chem.Phys. 23 1841

  • [1] Zhao Po, Wang Jianqiang, Chen Meiqing, Yang Jinxue, Su Zhengxiong, Lu Chenyang, Liu Huajun, Hong Zhiyong, Gao Rui. Effect of doping phase on the evolution of He+ ion irradiation defects and superconductivity of EuBa2Cu3O7-δ strips. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240124
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [4] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] Li Ming-Yang, Zhang Lei-Min, Lv Shasha, Li Zheng-Cao. Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite. Acta Physica Sinica, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [6] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [7] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [8] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [9] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [10] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [11] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [12] Wang Ru-Zhi, Xu Li-Chun, Yan Hui, Kohyama Masanori. First-principles predictions for the tensile strength of Al metal with dislocations of twist grain boundaries. Acta Physica Sinica, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [13] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [15] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [16] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [17] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [19] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [20] Yuan Xian-Zhang, Miao Zhong-Lin. In-situ photo-modulated reflectance study on the interface of Al and GaAs surface quantum well. Acta Physica Sinica, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
Metrics
  • Abstract views:  5258
  • PDF Downloads:  263
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2016
  • Accepted Date:  01 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回