Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The first-principle calculation on the Li cluster adsorbed on graphene

Yang Guang-Min Liang Zhi-Cong Huang Hai-Hua

Citation:

The first-principle calculation on the Li cluster adsorbed on graphene

Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a stable single sheet of carbon atoms with a honeycomb lattice, graphene has become attractive for its potential applications in electrochemical storage devices, such as anodes for rechargeable Li batteries. Since both sides of it can hold adsorbents, a graphene sheet is expected to have extra storage sites and therefore it has a possibly higher capacity than graphite. However, certain shortcomings of Li battery, such as instability lead to battery failure under overcharging or overvoltage conditions. The limit to capacity results in a short time of discharge. Thus, more attention should be paid to the stabilities of electrode materials, such as Li cluster nucleation on graphene leading to dendrite formation and failure of the Li-ion battery. In this work, we build a supercell model of single layer graphene with hexagonal structure, and then change the size of Li cluster which is used to be adsorbed on graphene, with keeping m Li:C ratio at 1:6. Using the first principle based on density functional theory, we calculate the density of states, charge density difference and energy band structure. The interaction between Li and pristine graphene is studied in detail by analyzing the electronic properties and charge distribution of the isolated Li clusters and Li clusters adsorbed on graphene. It is found that the ionic bonding can be formed at the interface between Li clusters and graphene, and the charge transfer controls the interaction of the Li-carbon nanostructure. Combing thermodynamics method with the nucleation mechanism, the relationship between the cluster size and nucleation probability is analyzed, and the nucleation on graphene of Li with a certain concentration is also investigated. We estimate the nucleation barrier for Li on graphene and investigate the stability of Li adsorption on graphene by considering the effects of Li concentration and temperature. The Li concentration of 16.7% is considered for the formation of clusters with different sizes on graphene. With the size of Li cluster increasing, the cluster adsorbed on the graphene begins to be more stable than the single Li atom. The formation energy for the cluster is found to increase with the increase of temperature, and it is negative, meaning that Li cluster can be formed. It is expected that the corresponding calculation results from this atomistic simulation will shed some light on the in-depth understanding of Li-storage on graphene and the cycling stability and dendrite formation in Li-ion batteries with graphene-based materials serving as the anode.
      Corresponding author: Yang Guang-Min, yangguangmin@cncnc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Changchun Normal University, China (Grant No. 2015-010).
    [1]

    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008Nano Lett. 8 2277

    [2]

    Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H 2010Electrochim.Acta 55 3909

    [3]

    Jaber-Ansari L, Puntambekar K P, Tavassol H, Yildirim H, Kinaci A, Kumar R, Saldana S J, Gewirth A A, Greeley J P, Chan M K, Hersam M C 2014ACS Appl.Mater.Interfaces 6 17626

    [4]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011ACS Nano 5 8739

    [5]

    Jang B Z, Liu C G, Neff D, Yu Z N, Wang M C, Xiong W, Zhamu A 2011Nano Lett. 11 3785

    [6]

    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J 2009ACS Nano 3 907

    [7]

    Zheng J, Ren Z, Guo P, Fang L, Fan J 2011Appl.Surf Sci 258 1651

    [8]

    Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H 2009ACS Nano 3 3730-6

    [9]

    Wang G X, Shen X D, Yao J, Park J 2009Carbon 47 2049

    [10]

    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z 2009Chem.Mater. 21 3136

    [11]

    Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D J 2010Am.Chem.Soc. 132 12556

    [12]

    Ferre-Vilaplana A 2008J.Phys.Chem.C 112 3998

    [13]

    Froudakis G E 2001Nano Lett. 1 531

    [14]

    Garay-Tapia A M, Romero A H, Barone V 2012J.Chem.Theory Comput. 8 1064

    [15]

    Khantha M, Cordero N A, Molina L M, Alonso J A, Girifalco L A 2004Phys.Rev.B 70 125422

    [16]

    Chan K T, Neaton J B, Cohen M L 2008Phys.Rev.B 77 235430

    [17]

    Yang C K 2009Appl.Phys.Lett. 94 163115

    [18]

    Medeiros P V C, Mota F D, Mascarenhas A J S, de Castilho C M C 2010Nanotechnology 21 115701

    [19]

    Klintenberg M, Lebegue S, Katsnelson M I, Eriksson O 2010Phys.Rev.B 81 085433

    [20]

    Tarascon J M, Armand M 2001Nature 414 359

    [21]

    Mayers M Z, Kaminski J W, Miller Ⅲ T F 2012J.Phys.Chem.C 116 26214

    [22]

    Harris S J, Timmons A, Baker D R, Monroe C 2010Chem.Phys.Lett. 485 265

    [23]

    Kresse G, Furthmller J 1996J.Comput.Mater.Sci. 6 15

    [24]

    Blchl P E 1994Phys.Rev.B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992Phys.Rev.B 46 6671

    [26]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015J.Phys.Chem.C 119 6464

    [27]

    Fan X F, Liu L, Kuo J L, Shen Z X 2010J.Phys.Chem.C 114 14939

    [28]

    Henkelman R, Arnaldsson A, Jonsson H J 2006Comput.Mater.Sci. 36 354

    [29]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014J.Phys.Chem.Lett. 5 1225

    [30]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010Nano Lett. 10 3386

  • [1]

    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008Nano Lett. 8 2277

    [2]

    Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H 2010Electrochim.Acta 55 3909

    [3]

    Jaber-Ansari L, Puntambekar K P, Tavassol H, Yildirim H, Kinaci A, Kumar R, Saldana S J, Gewirth A A, Greeley J P, Chan M K, Hersam M C 2014ACS Appl.Mater.Interfaces 6 17626

    [4]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011ACS Nano 5 8739

    [5]

    Jang B Z, Liu C G, Neff D, Yu Z N, Wang M C, Xiong W, Zhamu A 2011Nano Lett. 11 3785

    [6]

    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J 2009ACS Nano 3 907

    [7]

    Zheng J, Ren Z, Guo P, Fang L, Fan J 2011Appl.Surf Sci 258 1651

    [8]

    Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H 2009ACS Nano 3 3730-6

    [9]

    Wang G X, Shen X D, Yao J, Park J 2009Carbon 47 2049

    [10]

    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z 2009Chem.Mater. 21 3136

    [11]

    Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D J 2010Am.Chem.Soc. 132 12556

    [12]

    Ferre-Vilaplana A 2008J.Phys.Chem.C 112 3998

    [13]

    Froudakis G E 2001Nano Lett. 1 531

    [14]

    Garay-Tapia A M, Romero A H, Barone V 2012J.Chem.Theory Comput. 8 1064

    [15]

    Khantha M, Cordero N A, Molina L M, Alonso J A, Girifalco L A 2004Phys.Rev.B 70 125422

    [16]

    Chan K T, Neaton J B, Cohen M L 2008Phys.Rev.B 77 235430

    [17]

    Yang C K 2009Appl.Phys.Lett. 94 163115

    [18]

    Medeiros P V C, Mota F D, Mascarenhas A J S, de Castilho C M C 2010Nanotechnology 21 115701

    [19]

    Klintenberg M, Lebegue S, Katsnelson M I, Eriksson O 2010Phys.Rev.B 81 085433

    [20]

    Tarascon J M, Armand M 2001Nature 414 359

    [21]

    Mayers M Z, Kaminski J W, Miller Ⅲ T F 2012J.Phys.Chem.C 116 26214

    [22]

    Harris S J, Timmons A, Baker D R, Monroe C 2010Chem.Phys.Lett. 485 265

    [23]

    Kresse G, Furthmller J 1996J.Comput.Mater.Sci. 6 15

    [24]

    Blchl P E 1994Phys.Rev.B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992Phys.Rev.B 46 6671

    [26]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015J.Phys.Chem.C 119 6464

    [27]

    Fan X F, Liu L, Kuo J L, Shen Z X 2010J.Phys.Chem.C 114 14939

    [28]

    Henkelman R, Arnaldsson A, Jonsson H J 2006Comput.Mater.Sci. 36 354

    [29]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014J.Phys.Chem.Lett. 5 1225

    [30]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010Nano Lett. 10 3386

  • [1] Shen Ding, Liu Yao-Han, Tang Shu-Wei, Dong Wei, Sun Wen, Wang Lai-Gui, Yang Shao-Bin. First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene. Acta Physica Sinica, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Wu Jiang-Bin, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Electronic structure of twisted bilayer graphene. Acta Physica Sinica, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [12] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [13] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] Yuan Di, Huang Duo-Hui, Luo Hua-Feng, Wang Fan-Hou. First-principles study of Li-N acceptor pair codoped p-type ZnO. Acta Physica Sinica, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [17] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [18] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [19] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  6806
  • PDF Downloads:  1212
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2016
  • Accepted Date:  04 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回