Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of effects on high frequency vertical sounding by artificial field-aligned irregularities

Lü Li-Bin Li Qing-Liang Hao Shu-Ji Wu Zhen-Sen

Citation:

Theoretical analysis of effects on high frequency vertical sounding by artificial field-aligned irregularities

Lü Li-Bin, Li Qing-Liang, Hao Shu-Ji, Wu Zhen-Sen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ionospheric heating experiments have been conducted widely at high power heating stations, such as Arecibo, Platteville, HAARP, etc. It has been found that once high-power high-frequency (HF) radio wave is injected into the ionosphere, the electron temperature and density in the illuminated region of the ionosphere can be disturbed, and furthermore, a large number of nonlinear phenomena may be triggered because of the complicated instabilities. One of the most interesting heating effects is the generation of the artificial field-aligned irregularities (AFAI), which has profound influences on electromagnetic wave propagation. Many diagnostic methods have been used for studying the characteristics of AFAI, such as the HF vertical/oblique sounding, HF/VHF coherent radar, etc. During the heating experiments, traces spreading on frequency or height are observed from the HF vertical sounding ionograms, which suggests that the propagation of the sounding wave will be affected by AFAI. In the ionosphere F region, the electron diffusion and thermal conductivity rate are greater along the geomagnetic field lines than across the field line, leading to a stretch of AFAI along the geomagnetic field line. For the special structure, the AFAI will scatter the incident wave in a cone with the axis parallel to the geomagnetic field direction, which is called artificial field-aligned scattering (AFAS). Because of the high sensitivity to the geomagnetic field of AFAS, we try to study different effects on the HF vertical sounding of AFAI generated at different latitudes, by constructing a propagation model and performing a simulation, in order to seek the potential applications in HF transmission. Based on the special scattering feature of AFAI and the ray tracing technique, a propagation model for HF vertical sounding scattered by AFAI is proposed. With this model the ray paths of the sounding waves with AFAI are simulated in amid-latitude region, and a new kind of artificial spread trace is found to start from the heating frequency and spread to higher band. Taking account of the strong dependence of the AFAS on the geomagnetic field, the influences of AFAI on the HF vertical sounding at different latitudes are analyzed theoretically. It is indicated that the artificial spread traces will appear only when the following two conditions are satisfied: 1) the sounding wave can reach the AFAI height; 2) the sounding wave is incident perpendicularly to the AFAI. It is also shown that the spread trace becomes shorter with the latitude and the inclination increasing. Furthermore, the simulations from different heating stations suggest that artificial spread traces do not exist when HF vertical sounding is located just below the AFAI, which explains why such phenomena cannot be observed at high latitudes. Nevertheless, if the HF vertical sounding moves outside the heating station toward the south, the spread traces will be apparent for Arecibo, limited for Platteville and still unavailable for HAARP. Finally, if the AFAI is assumed to be present, apparent artificial spread traces of the mid-low latitude are predicted, and the important valuable applications of AFAI in HF transmission are proposed.
      Corresponding author: Lü Li-Bin, libin_lv@163.com;wuzhs@mail.xidian.edu.cn ; Wu Zhen-Sen, libin_lv@163.com;wuzhs@mail.xidian.edu.cn
    • Funds: Project supported by the National Key Laboratory of Electromagnetic Environment, China (Grant No. 201600017).
    [1]

    Utlaut W F 1970J.Geophys.Res. 75 6402

    [2]

    Utlaut W F, Violette E J, Paul A K 1970J.Geophys.Res. 75 6429

    [3]

    Georges T M 1970J.Geophys.Res. 75 6436

    [4]

    Thome G D, Blood D W 1974Radio Sci. 9 917

    [5]

    Fialer P A 1974Radio Sci. 9 923

    [6]

    Tsai L C, Berkey F T, Wong A Y, Pau J 2001J.Atoms.Solar-Terr.Phys. 63 107

    [7]

    Kuo S, Snyder A 2013J.Geophys.Res.Space Phys. 118 2734

    [8]

    Kuo S, Snyder A, Lee M C 2014Phys.Plasmas 21 062902

    [9]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Chinese J.Geophys. 56 2503(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球物理学报56 2503]

    [10]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Acta Phys.Sin. 62 229402(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013物理学报62 229402]

    [11]

    Xie H, Xiao Z 1993Chinese J.Geophys. 36 18(in Chinese)[谢红, 肖佐1993地球物理学报36 18]

    [12]

    Wang C S, Li J 1994Acta Phys.Sin. 43 1476(in Chinese)[黄朝松, 李钧1994物理学报43 1476]

    [13]

    Zhou L, Tang C J 2009Acta Phys.Sin. 58 8254(in Chinese)[周磊, 唐昌建2009物理学报58 8254]

    [14]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009Acta Phys.Sin. 58 7382(in Chinese)[邓峰, 赵正予, 石润, 张援农2009物理学报58 7382]

    [15]

    Song L, Miao J S, Li Q L 2014Chinese J.Radio Science 29 539(in Chinese)[宋磊, 苗建苏, 李清亮2014电波科学学报29 539]

    [16]

    Huang C S, Keley M C 1996Acta Phys.Sin. 45 1830(in Chinese)[黄朝松, Keley M C 1996物理学报45 1830]

    [17]

    Hou J C 1986J.Wuhan Univ.(Nat.Sci.Ed) 4 49(in Chinese)[侯昌杰1986武汉大学学报4 49]

    [18]

    Minkoff J, Kugelman P, Weissman I 1974Radio Sci. 9 941

    [19]

    Minkoff J, Laviola M, Abrams S, Porter D 1974Radio Sci. 9 957

    [20]

    Minkoff J 1974Radio Sci. 9 997

    [21]

    Perkins F W 1974Radio Sci. 9 1065

    [22]

    Braginskii S I 1965Rev.Plasma Phys. 1 205

    [23]

    Jones R M 1975OT Report 75 6

  • [1]

    Utlaut W F 1970J.Geophys.Res. 75 6402

    [2]

    Utlaut W F, Violette E J, Paul A K 1970J.Geophys.Res. 75 6429

    [3]

    Georges T M 1970J.Geophys.Res. 75 6436

    [4]

    Thome G D, Blood D W 1974Radio Sci. 9 917

    [5]

    Fialer P A 1974Radio Sci. 9 923

    [6]

    Tsai L C, Berkey F T, Wong A Y, Pau J 2001J.Atoms.Solar-Terr.Phys. 63 107

    [7]

    Kuo S, Snyder A 2013J.Geophys.Res.Space Phys. 118 2734

    [8]

    Kuo S, Snyder A, Lee M C 2014Phys.Plasmas 21 062902

    [9]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Chinese J.Geophys. 56 2503(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球物理学报56 2503]

    [10]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Acta Phys.Sin. 62 229402(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013物理学报62 229402]

    [11]

    Xie H, Xiao Z 1993Chinese J.Geophys. 36 18(in Chinese)[谢红, 肖佐1993地球物理学报36 18]

    [12]

    Wang C S, Li J 1994Acta Phys.Sin. 43 1476(in Chinese)[黄朝松, 李钧1994物理学报43 1476]

    [13]

    Zhou L, Tang C J 2009Acta Phys.Sin. 58 8254(in Chinese)[周磊, 唐昌建2009物理学报58 8254]

    [14]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009Acta Phys.Sin. 58 7382(in Chinese)[邓峰, 赵正予, 石润, 张援农2009物理学报58 7382]

    [15]

    Song L, Miao J S, Li Q L 2014Chinese J.Radio Science 29 539(in Chinese)[宋磊, 苗建苏, 李清亮2014电波科学学报29 539]

    [16]

    Huang C S, Keley M C 1996Acta Phys.Sin. 45 1830(in Chinese)[黄朝松, Keley M C 1996物理学报45 1830]

    [17]

    Hou J C 1986J.Wuhan Univ.(Nat.Sci.Ed) 4 49(in Chinese)[侯昌杰1986武汉大学学报4 49]

    [18]

    Minkoff J, Kugelman P, Weissman I 1974Radio Sci. 9 941

    [19]

    Minkoff J, Laviola M, Abrams S, Porter D 1974Radio Sci. 9 957

    [20]

    Minkoff J 1974Radio Sci. 9 997

    [21]

    Perkins F W 1974Radio Sci. 9 1065

    [22]

    Braginskii S I 1965Rev.Plasma Phys. 1 205

    [23]

    Jones R M 1975OT Report 75 6

  • [1] Zhao Hai-Sheng, Xu Zheng-Wen, Xu Zhao-Hui, Xue Kun, Zheng Yan-Shuai, Xie Shou-Zhi, Feng Jie, Wu Jian. Ionospheric scintillation suppression based on chemical release. Acta Physica Sinica, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [2] Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan. Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere. Acta Physica Sinica, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [3] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [4] Chang Shan-Shan, Ni Bin-Bin, Zhao Zheng-Yu, Wang Feng, Li Jin-Xing, Zhao Jing-Jing, Gu Xu-Dong, Zhou Chen. Test particle simulation of resonant interaction between energetic electrons in the magnetosphere and ELF/VLF waves generated by ionospheric modification. Acta Physica Sinica, 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [5] Hao Shu-Ji, Li Qing-Liang, Yang Ju-Tao, Wu Zhen-Sen. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere. Acta Physica Sinica, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [6] Chen Li-Juan, Lu Shi-Ping, Mo Jia-Qi. The periodic orbits of sport model of plasmas particle in the process of magnetosphere-ionosphere coupling. Acta Physica Sinica, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [7] Sheng Zheng. Research on different time-scale prediction models for the total electron content. Acta Physica Sinica, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [8] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere. Acta Physica Sinica, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [9] Wang Feng, Zhao Zheng-Yu, Chang Shan-Shan, Ni Bin-Bin, Gu Xu-Dong. Raytracing of extreamely low frequency waves radiated from ionospheric artificial modulation at low latitude. Acta Physica Sinica, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [10] Hong Zhen-Jie, Liu Rong-Jian, Guo Peng, Dong Nai-Ming. Non-spherical symmetric inversion of ionospheric occultation data. Acta Physica Sinica, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [11] Hu Yao-Gai, Zhao Zheng-Yu, Xiang Wei, Zhang Yuan-Nong. Morphological control of artificial ionospheric hole and its short-wave propagation effects. Acta Physica Sinica, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [12] Xu Xian-Sheng, Hong Zhen-Jie, Guo Peng, Liu Rong-Jian. Retrieval and validation of ionospheric measurements from COSMIC radio occultation. Acta Physica Sinica, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [13] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Disturbance effects of some representative chemical releases in ionosphere. Acta Physica Sinica, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [14] Shi Run, Zhao Zheng-Yu. Preliminary study of effects introduced by the dip angle on IAR. Acta Physica Sinica, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [15] Deng Feng, Zhao Zheng-Yu, Shi Run, Zhang Yuan-Nong. Two-dimensional simulation of high-frequency-induced large-scale irregularities in F region. Acta Physica Sinica, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [16] LV KE-PU, DUAN WEN-SHAN, ZHAO JIN-BAO, WANG BEN-REN, WEI RONG-JUE. SOLITONS IN INHOMOGENEOUS PLASMAS. Acta Physica Sinica, 1999, 48(11): 1969-1975. doi: 10.7498/aps.48.1969
    [17] HUANG CHAO-SONG, LI JUN, M. C. KELLEY. COUPLING BETWEEN ATMOSPHERIC GRAVITY WAVES AND PLASMA INTERCHANGE INSTABILITY IN THE IONOSPHERE. Acta Physica Sinica, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] HUANG CHAO-SONG, LI JUN, M .C. KELLEY. A THEORY OF MW-LATITUDE IONOSPHERIC IRREGULARITIES PRODUCED BY ATMO-SPHERIC GRAVITY WAVES. Acta Physica Sinica, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 研究中国天空电离层之初草报告. Acta Physica Sinica, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
Metrics
  • Abstract views:  4917
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2016
  • Accepted Date:  14 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回