Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Traceable trans-scale heterodyne interferometer with subnanometer resolution

He Yin-Zhu Zhao Shi-Jie Wei Hao-Yun Li Yan

Citation:

Traceable trans-scale heterodyne interferometer with subnanometer resolution

He Yin-Zhu, Zhao Shi-Jie, Wei Hao-Yun, Li Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to realize the traceable trans-scale displacement measurements with high resolutions in the fields of fundamental scientific research and ultra-precision machining, we demonstrate a trans-scale heterodyne interferometer with a sub-nanometer resolution, through assembling a compact iodine-stabilized laser at 532 nm. Using modulation transfer spectroscopy, the green laser is traced back to the transition line R(56)32-O(a10), which is one of the recommended spectral lines for meter redefinition. The Allan standard deviation of the laser frequency is 1.310-12 within an average time of 1 s. Compared with most He-Ne lasers, the green laser has a short wavelength and good stability, which leads to a higher resolution. We use two acoustic-optic modulators driven by a two-channel acoustic-optic driver sharing the same crystal oscillator to separate input beams spatially. The frequency of one beam is shifted by 80 MHz and the other is shifted by 82 MHz, which results in a beat frequency of 2 MHz. As a result, the nonlinearity caused by source mixing substantially is reduced. The phase noises of the fibers and two acoustic-optic modulators are well compensated. In order to minimize the difficulty in adjusting the optical path and the error of the measurement, we integrate the interferometry components and design a monolithic prism. The optical resolution of the interferometer reaches to /4. The experiment is carried out in a vacuum environment to reduce the influence of the refractive index of air. High-precision phase measurement technology is used to improve the accuracy of the interferometer. The errors of the interferometer can be classified as random and systematic errors. Random errors include the error from the frequency instability of the laser and the error due to environmental effects. Systematic errors include the phase measurement error and the nonlinearity error. To verify the performance of the interferometer, these errors must be evaluated. In a span of 100 mm, the measurement uncertainties caused by laser wavelength uncertainty, the air refractive index uncertainty, the phase measurement uncertainty and the nonlinearity error are 3 pm, 300 pm, 6.3 pm and 118 pm, respectively. Finally, the performance evaluation shows that the combined uncertainty of the interferometer reaches 322 pm in a span of 100 mm, which is mainly due to the refractive index of air. The heterodyne interferometer meets the requirements for traceable trans-scale measurement with a sub-nanometer resolution, which can be widely used in instrument calibration, length standard making, and geometric measurement.
      Corresponding author: Zhao Shi-Jie, zhao_sj2012@163.com;liyan@mail.tsinghua.edu.cn ; Li Yan, zhao_sj2012@163.com;liyan@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51575311) and the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ09070907).
    [1]

    Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877

    [2]

    Li T B 2005 Shanghai Measurement and Testing 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]

    [3]

    Zhang P P, Ma Y, Zhang B W, Li T B 2011 Acta Opt. Sin. 31 190 (in Chinese) [张萍萍, 马艳, 张宝武, 李同保 2011 光学学报 31 190]

    [4]

    Bustillo J M, Howe R T, Muller R S 1998 Proc. IEEE 86 1552

    [5]

    Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟永刚, 温诗铸 2004 物理学报 53 728]

    [6]

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702]

    [7]

    Zuo A B, Li W B, Peng Y X, Cao J P, Zang E J 2005 Chin. J. Lasers 32 164 (in Chinese) [左爱斌, 李文博, 彭月祥, 曹建平, 臧二军 2005 中国激光 32 164]

    [8]

    Cordiale P, Galzerano G, Schnatz H 2000 Metrologia 37 177

    [9]

    Bi Z Y, Luo M, Ding J X, Ma L S 2000 Acta Opt. Sin. 20 1699 (in Chinese) [毕志毅, 罗明, 丁晶新, 马龙生 2000 光学学报 20 1699]

    [10]

    Galzerano G, Svelto C, Bertinetto F, Bava E 1999 Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 3 1913

    [11]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 8 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 8]

    [12]

    Zang E J, Cao J P, Zhong M C, Li C Y, Shen N C, Hong D M, Cui L R, Zhu Z, Liu A H 2002 Appl. Opt. 41 7012

    [13]

    Badami V G, Patterson S R 2000 Precis. Eng. 24 41

    [14]

    Quenelle R C 1983 Hewlett Packard 34 10

    [15]

    Hou W, Wilkening G 1992 Precis. Eng. 14 91

    [16]

    Cosijins S J A G, Haitjema H, Schellekens P H J 2002 Precis. Eng. 26 448

    [17]

    Zang E J, Cao J P, Li Y, Deng Y K, Yang T, Li C Y, Li W B 2007 Chin. J. Lasers 34 203 (in Chinese) [臧二军, 曹建平, 李烨, 邓勇开, 杨涛, 李成阳, 李文博 2007 中国激光 34 203]

    [18]

    Born M, Wolf E 1992 Principles of Optics (7th Ed.) (Cambridge: Press of University of Cambridge) p92

    [19]

    Schwarz D, Wormeester H, Poelsema B 2011 Thin Solid Films 519 2994

    [20]

    Wu C M, Lawall J, Deslattes R D 1999 Appl. Opt. 38 4089

    [21]

    Ellis J D, Meskers A J, Spronck J W, Munning R H 2011 Opt. Lett. 36 3584

    [22]

    Hu P C, Chen P, Ding X M, Tan J B 2014 Appl. Opt. 53 5448

    [23]

    Pdooer P, Zaman Khan T, Haque Khan M, Muktadir Rahman M 2014 Int. J. Computer Appl. 96 1

  • [1]

    Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877

    [2]

    Li T B 2005 Shanghai Measurement and Testing 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]

    [3]

    Zhang P P, Ma Y, Zhang B W, Li T B 2011 Acta Opt. Sin. 31 190 (in Chinese) [张萍萍, 马艳, 张宝武, 李同保 2011 光学学报 31 190]

    [4]

    Bustillo J M, Howe R T, Muller R S 1998 Proc. IEEE 86 1552

    [5]

    Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟永刚, 温诗铸 2004 物理学报 53 728]

    [6]

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702]

    [7]

    Zuo A B, Li W B, Peng Y X, Cao J P, Zang E J 2005 Chin. J. Lasers 32 164 (in Chinese) [左爱斌, 李文博, 彭月祥, 曹建平, 臧二军 2005 中国激光 32 164]

    [8]

    Cordiale P, Galzerano G, Schnatz H 2000 Metrologia 37 177

    [9]

    Bi Z Y, Luo M, Ding J X, Ma L S 2000 Acta Opt. Sin. 20 1699 (in Chinese) [毕志毅, 罗明, 丁晶新, 马龙生 2000 光学学报 20 1699]

    [10]

    Galzerano G, Svelto C, Bertinetto F, Bava E 1999 Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 3 1913

    [11]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 8 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 8]

    [12]

    Zang E J, Cao J P, Zhong M C, Li C Y, Shen N C, Hong D M, Cui L R, Zhu Z, Liu A H 2002 Appl. Opt. 41 7012

    [13]

    Badami V G, Patterson S R 2000 Precis. Eng. 24 41

    [14]

    Quenelle R C 1983 Hewlett Packard 34 10

    [15]

    Hou W, Wilkening G 1992 Precis. Eng. 14 91

    [16]

    Cosijins S J A G, Haitjema H, Schellekens P H J 2002 Precis. Eng. 26 448

    [17]

    Zang E J, Cao J P, Li Y, Deng Y K, Yang T, Li C Y, Li W B 2007 Chin. J. Lasers 34 203 (in Chinese) [臧二军, 曹建平, 李烨, 邓勇开, 杨涛, 李成阳, 李文博 2007 中国激光 34 203]

    [18]

    Born M, Wolf E 1992 Principles of Optics (7th Ed.) (Cambridge: Press of University of Cambridge) p92

    [19]

    Schwarz D, Wormeester H, Poelsema B 2011 Thin Solid Films 519 2994

    [20]

    Wu C M, Lawall J, Deslattes R D 1999 Appl. Opt. 38 4089

    [21]

    Ellis J D, Meskers A J, Spronck J W, Munning R H 2011 Opt. Lett. 36 3584

    [22]

    Hu P C, Chen P, Ding X M, Tan J B 2014 Appl. Opt. 53 5448

    [23]

    Pdooer P, Zaman Khan T, Haque Khan M, Muktadir Rahman M 2014 Int. J. Computer Appl. 96 1

  • [1] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [2] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [4] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [5] Peng Bo-Dong, Song Yan, Sheng Liang, Wang Pei-Wei, Hei Dong-Wei, Zhao Jun, Li Yang, Zhang Mei, Li Kui-Nian. Research on MeV pulsed radiation detection based on refractive index modulaiton. Acta Physica Sinica, 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [6] Zheng Dong-Hui, Li Jin-Peng, Chen Lei, Zhu Wen-Hua, Han Zhi-Gang, Wulan Tu-Ya, Guo Ren-Hui. Spatial phase-shifting polarization point-piffraction interferometer for wavefront measurement. Acta Physica Sinica, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [7] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [8] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [9] Yi Shi-He, Chen Zhi. Review of recent experimental studies of the shock train flow field in the isolator. Acta Physica Sinica, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [10] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [11] Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility. Acta Physica Sinica, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [12] Zhong Cheng, Chen Zhi-Quan, Yang Wei-Guo, Xia Hui. Influence of electrolytes on diffusion properties of colloidal particles in dense suspensions. Acta Physica Sinica, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [13] Man Tian-Long, Wan Yu-Hong, Jiang Zhu-Qing, Wang Da-Yong, Tao Shi-Quan. Measurement of the spatial coherence of extended light source by twin beams-interference method. Acta Physica Sinica, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [14] Wu Xue-Jian, Wei Hao-Yun, Zhu Min-Hao, Zhang Ji-Tao, Li Yan. Frequency measurement of dual frequency He-Ne laser based on a femtosecond optical frequency comb. Acta Physica Sinica, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [15] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [16] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Li Yong-Sheng, Jiang Xiao-Hua, Ding Yong-Kun. Direct measurement technique for shock wave velocity under super high pressure. Acta Physica Sinica, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [18] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [19] Dong Yi-Ming, Xu Yun-Fei, Zhang Zhang, Lin Qiang. The experimental investigation of orbital angular momentum of complex astigmatic elliptical beams. Acta Physica Sinica, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] Qi Sheng-Wen, Yang Xiu-Qin, Chen Kuan, Zhang Chun-Ping, Zhang Lian-Shun, Wang Xin-Yu, Xu Tang, Liu Yong-Liang, Zhang Guang-Yin. Photoinduced birefringence in an azo-dye-doped polymer. Acta Physica Sinica, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
Metrics
  • Abstract views:  5403
  • PDF Downloads:  277
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2016
  • Accepted Date:  23 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回