Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface

Li Tang-Jing Liang Jian-Gang Li Hai-Peng Niu Xue-Bin Liu Ya-Qiao

Citation:

Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface

Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A single-layer reflecting element is proposed based on the principle of linear-to-circular polarization conversion focusing metasurface, which can independently control the phases of x-polarized and y-polarized reflecting waves and operate in a broadband of 10-14 GHz. Following the generalized Snell's laws of reflection, a super cell is designed with a phase-gradient of -60 for x-polarized waves and 60 for y-polarized waves, and the simulation results show the well wideband anomalous reflection as expected. In the design of the multifunctional metasurface, the 1313 unit cells are used to satisfy the parabolic profile and the focal-distance-to-diameter ratio is set to be 0.5. The phase compensation for forming a constant aperture phase is provided by the individual reflected elements with different structure parameters and x-y=90 is used to realize polarization conversion. The designed sample is simulated in CST Microwave Studio and the results show that both of the x-polarized and y-polarized plane waves are well focused through the reflection of the focusing metasurface in a broadband of 10-14 GHz. Traditionally, multi-layer element is used to broaden phase coverage and bandwidth, the single-layer design in this paper greatly reduces the cost, processing difficulty and thickness of the lens. For further application, a linearly polarized Vivaldi antenna with a highest gain of 10 dB is located at the focal point of metasurface and the angle included between its polarization direction and x-axis is 45 in order to acquire right-handed circularly polarized reflecting wave. According to the reversibility principle of electromagnetic wave propagation, the spherical wave radiated by the feed antenna is converted into plane wave by the reflection of the focusing metasurface so that the antenna gain is remarkably enhanced. Simultaneously, the linearly polarized wave can be transformed into circularly polarized wave. Finally, the feed antenna and the metasurface are fabricated, assembled and measured. Numerical and experimental results are in good agreement with each other, which shows that the -1 dB gain bandwidth of the high-gain antenna is 24% (11-14 GHz) and the 3 dB axial ratio bandwidth is 29.8% (10-13.5 GHz). In addition, the gain at 12 GHz reaches a highest value of 19.6 dBic, and the aperture efficiency is more than 54%. The good performances indicate that the proposed broadband high-gain circularly polarized antenna has a well promising application in various communication systems. It is worth noting that the horizontally polarized, vertically polarized, right-handed circularly polarized and left-handed circularly polarized high-gain antenna can be realized with the rotation of feed antenna. In this case the idea is more versatile and valuable for designing the polarization reconfigurable antenna systems.
      Corresponding author: Li Tang-Jing, litangjing666@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [3]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [7]

    Estakhri N M, Al A 2014 Phys. Rev. B 89 235419

    [8]

    Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328

    [9]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [10]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [11]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [12]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407

    [14]

    Lei X, Chen G H, Zhao M Y, Zhang G Q 2014 J. Microwaves 30 37 (in Chinese) [雷雪, 陈国虎, 赵明洋, 张广求 2014 微波学报 30 37]

    [15]

    Zhao G, Jiao Y C, Zhang F, Zhang F S 2010 IEEE Antennas Wirel. Propag. Lett. 9 330

    [16]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [17]

    Saeidi C, Weide D 2015 Appl. Phys. Lett. 106 113110

    [18]

    Ahmadi F, Namiranian A, Virdee B 2015 Electromagnetics 35 93

    [19]

    Yu J B, Ma H, Wang J F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [20]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [21]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xie Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [2]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [3]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5629

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [7]

    Estakhri N M, Al A 2014 Phys. Rev. B 89 235419

    [8]

    Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328

    [9]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [10]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [11]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [12]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407

    [14]

    Lei X, Chen G H, Zhao M Y, Zhang G Q 2014 J. Microwaves 30 37 (in Chinese) [雷雪, 陈国虎, 赵明洋, 张广求 2014 微波学报 30 37]

    [15]

    Zhao G, Jiao Y C, Zhang F, Zhang F S 2010 IEEE Antennas Wirel. Propag. Lett. 9 330

    [16]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [17]

    Saeidi C, Weide D 2015 Appl. Phys. Lett. 106 113110

    [18]

    Ahmadi F, Namiranian A, Virdee B 2015 Electromagnetics 35 93

    [19]

    Yu J B, Ma H, Wang J F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [20]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [21]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xie Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [3] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [6] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [7] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [8] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [9] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [11] Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Xiao-Kuan, Zhang Chen-Xin, Cai Tong, Li Hai-Peng. Design of reflective linear-circular polarization converter based on phase gradient metasurface. Acta Physica Sinica, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [12] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [14] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [15] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [17] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Xia Song, Xu Zhuo, Zhang Jie-Qiu. A broadband transmission absorption polarization-independent metamaterial absorber. Acta Physica Sinica, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [20] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
Metrics
  • Abstract views:  6677
  • PDF Downloads:  626
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2016
  • Accepted Date:  29 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回