Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing

Guo Guang-Ming Liu Hong Zhang Bin Zhang Qing-Bing

Citation:

Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing

Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Qing-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Pulsed actuation is one of the most fundamental control types to study regularity of flow structures in supersonic mixing layers, which helps to predict the aero-optical effects caused by the supersonic mixing layer where the different-sized vortices dominate the flow field. However, the knowledge about the evolution mechanism of vortices in the supersonic mixing layer which is controlled by the pulsed forcing is limited. Based on the large eddy simulation (LES), the visualized flow field of a supersonic mixing layer controlled by the pulsed forcing is presented and the unique growth mechanism of the vortices in such a case is revealed clearly. The method of position extraction of the vortex core in the supersonic mixing layer, which is a quantitative technique to obtain the instantaneous location of a vortex in flow field, is employed to calculate the dynamic characteristics (e.g., instantaneous convective speed and size) of the vortices quantitatively. The pulsed forcings of different frequencies are imposed on the same supersonic mixing layer respectively, and the instantaneous convective speed and size of the vortices for each pulse frequency considered in this study are then computed. By comparing the dynamic characteristics of the vortices between cases, the evolution mechanism of the vortices in the supersonic mixing layer controlled by the pulsed forcing is revealed.as follows. 1) Growth of the vortices in the supersonic mixing layer controlled by the pulsed forcing no longer depends on the pairing nor merging between adjacent vortices, which is just the growth mechanism of vortices in a free supersonic mixing layer. Actually, the size of a vortex in the controlled supersonic mixing layer is dominated by the imposed pulse frequency, so the size of each vortex in such a flow field is approximately identical. 2) The number of vortices in the controlled supersonic mixing layer is proportional to the pulse frequency, whereas the size of vortex is inversely proportional to the pulse frequency. That is, the higher the pulse frequency, the bigger the number of vortices in the controlled flow field is and the smaller the size of every vortex. 3) The average convective speed of vortices in the controlled supersonic mixing layer gradually decreases with pulse frequency increasing because the pulsed forcing essentially drags on the movement of vortices in flow field. Finally, an equation which describes the quantitative relationship between the dynamic characteristics of a vortex and the pulsed forcing frequency is derived, that is, the product of the average convective speed of vortices in the controlled supersonic mixing layer and the imposed pulse period is approximately equal to the mean diameter of vortices in the flow field.
      Corresponding author: Guo Guang-Ming, guoming20071028@163.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant Nos. 91441205, 91330203).
    [1]

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页]

    [2]

    Shen Q, Yuan X J, Wang Q, Yang W B, Guan F M, Ji F 2012 Adv. Mech. 42 252 (in Chinese) [沈清, 袁湘江, 王强, 杨武兵, 关发明, 纪锋 2012 力学进展 42 252]

    [3]

    Luo J S 2015 Acta Aeronaut. Astronaut. Sin. 36 357 (in Chinese) [罗纪生 2015 航空学报 36 357]

    [4]

    Zhu Y Z, Yi S H, Kong X P, He Lin 2015 Acta Phys. Sin. 64 064701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 何霖 2015 物理学报 64 064701]

    [5]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440

    [6]

    Laizet S, Lardeau S, Lamballais E 2010 Phys. Fluids 22 015104

    [7]

    Wang B, Wei W, Zhang Y L, Zhang H Q, Xue S Y 2015 Comput. Fluids 123 32

    [8]

    Zhang Y L, Wang B, Zhang H Q, Xue S Y 2015 J. Propul. Power 31 156

    [9]

    Chen Q, Wang B, Zhang H Q, Zhang Y L, Gao W 2016 Int. J. Hydrogen Energy 41 3171

    [10]

    Jumper E J, Hugo R J 1995 AIAA J. 33 2151

    [11]

    Catrakis H J, Aguirre R C 2004 AIAA J. 42 1973

    [12]

    Dimotaksi P, Catrakis H, Fourguette D 2001 J. Fluid Mech. 433 105

    [13]

    Chew L, Christiansen W 1993 AIAA J. 31 2290

    [14]

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2014 物理学报 63 054703]

    [15]

    Gan C J, Li L, Ma H D, Xiong H L 2013 Acta Phys. Sin. 62 184701 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2013 物理学报 62 184701]

    [16]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 2708

    [17]

    Jumper E J, Fitagerald E J 2001 Prog. Aerosp. Sci. 37 299

    [18]

    Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392

    [19]

    Visbal M R, Rizzeta D P 2008 AIAA Paper 2008-1074

    [20]

    Rennie R M, Siegenthaler J P, Jumper E J 2006 AIAA Paper 2006-561

    [21]

    Rennie R M, Duffin D A, Jumper E J 2007 AIAA Paper 2007-4007

    [22]

    Freeman A P, Catrakis H J 2009 AIAA J. 47 2582

    [23]

    Rennie R M, Duffin D A, Jumper E J 2008 AIAA J. 46 2787

    [24]

    Guo G M, Liu H, Zhang B, Zhang Z Y, Zhang Q B 2016 Acta Phys. Sin. 65 074702 (in Chinese) [郭广明, 刘洪, 张斌, 张忠阳, 张庆兵 2016 物理学报 65 074702]

    [25]

    Guo G M, Liu H, Zhang B 2016 J. Astronaut. Aeronaut. Aviat. 48 57

    [26]

    Papamoschou D, Roshko A l988 J. Fluid Mech. 197 1

    [27]

    Aguirre R C, Catrakis H J 2004 AIAA J. 42 10

    [28]

    Papamoschou D 1991 AIAA J. 29 5

    [29]

    Kourta A, Sauvage R 2002 Phys. Fluids 14 3790

  • [1]

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页]

    [2]

    Shen Q, Yuan X J, Wang Q, Yang W B, Guan F M, Ji F 2012 Adv. Mech. 42 252 (in Chinese) [沈清, 袁湘江, 王强, 杨武兵, 关发明, 纪锋 2012 力学进展 42 252]

    [3]

    Luo J S 2015 Acta Aeronaut. Astronaut. Sin. 36 357 (in Chinese) [罗纪生 2015 航空学报 36 357]

    [4]

    Zhu Y Z, Yi S H, Kong X P, He Lin 2015 Acta Phys. Sin. 64 064701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 何霖 2015 物理学报 64 064701]

    [5]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440

    [6]

    Laizet S, Lardeau S, Lamballais E 2010 Phys. Fluids 22 015104

    [7]

    Wang B, Wei W, Zhang Y L, Zhang H Q, Xue S Y 2015 Comput. Fluids 123 32

    [8]

    Zhang Y L, Wang B, Zhang H Q, Xue S Y 2015 J. Propul. Power 31 156

    [9]

    Chen Q, Wang B, Zhang H Q, Zhang Y L, Gao W 2016 Int. J. Hydrogen Energy 41 3171

    [10]

    Jumper E J, Hugo R J 1995 AIAA J. 33 2151

    [11]

    Catrakis H J, Aguirre R C 2004 AIAA J. 42 1973

    [12]

    Dimotaksi P, Catrakis H, Fourguette D 2001 J. Fluid Mech. 433 105

    [13]

    Chew L, Christiansen W 1993 AIAA J. 31 2290

    [14]

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2014 物理学报 63 054703]

    [15]

    Gan C J, Li L, Ma H D, Xiong H L 2013 Acta Phys. Sin. 62 184701 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2013 物理学报 62 184701]

    [16]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 2708

    [17]

    Jumper E J, Fitagerald E J 2001 Prog. Aerosp. Sci. 37 299

    [18]

    Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392

    [19]

    Visbal M R, Rizzeta D P 2008 AIAA Paper 2008-1074

    [20]

    Rennie R M, Siegenthaler J P, Jumper E J 2006 AIAA Paper 2006-561

    [21]

    Rennie R M, Duffin D A, Jumper E J 2007 AIAA Paper 2007-4007

    [22]

    Freeman A P, Catrakis H J 2009 AIAA J. 47 2582

    [23]

    Rennie R M, Duffin D A, Jumper E J 2008 AIAA J. 46 2787

    [24]

    Guo G M, Liu H, Zhang B, Zhang Z Y, Zhang Q B 2016 Acta Phys. Sin. 65 074702 (in Chinese) [郭广明, 刘洪, 张斌, 张忠阳, 张庆兵 2016 物理学报 65 074702]

    [25]

    Guo G M, Liu H, Zhang B 2016 J. Astronaut. Aeronaut. Aviat. 48 57

    [26]

    Papamoschou D, Roshko A l988 J. Fluid Mech. 197 1

    [27]

    Aguirre R C, Catrakis H J 2004 AIAA J. 42 10

    [28]

    Papamoschou D 1991 AIAA J. 29 5

    [29]

    Kourta A, Sauvage R 2002 Phys. Fluids 14 3790

  • [1] Dong Shuai, Ji Xiang-Yong, Li Chun-Xi. Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field. Acta Physica Sinica, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] Zhang Dong-Dong, Tan Jian-Guo, Yao Xiao. Response characteristics of inflow-stimulated Kelvin-Helmholtz vortex in compressible shear layer. Acta Physica Sinica, 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [3] Guo Guang-Ming, Zhu Lin, Xing Bo-Yang. Density distribution characteristics of fluid inside vortex in supersonic mixing layer. Acta Physica Sinica, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [4] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [5] Yan Deng-Wei, Wang Li-Dan, Duan Shu-Kai. Memristor-based multi-scroll chaotic system and its pulse synchronization control. Acta Physica Sinica, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [6] Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Acta Physica Sinica, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [7] Shen Lu-Yu, Lu Chang-Gen. Receptivity of the steady cross-flow vortices in three-dimensional boundary layer. Acta Physica Sinica, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [8] Wang Sheng-Ye, Wang Guang-Xue, Dong Yi-Dao, Deng Xiao-Gang. High-order detached-eddy simulation method based on a Reynolds-stress background model. Acta Physica Sinica, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [9] Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator. Acta Physica Sinica, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [10] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [11] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [12] Chen Shu-Ying, Wang Hai-Dou, Xu Bin-Shi, Kang Jia-Jie. Investigation on the bonding behavior of the interface within the supersonic plasma sprayed coating system based on the fractal theory. Acta Physica Sinica, 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [13] Bao Yun, Ning Hao, Xu Wei. Corner vortex characteristics at the reversal of large scale circulation in turbulent Rayleigh-Bnard convection. Acta Physica Sinica, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [14] Ji Fei, Zhao Jun-Hu, Shen Qian, Zhi Rong, Gong Zhi-Qiang. The distribution of large-scale drought/flood of summer in China under different configurations of monsoon and polar vortex. Acta Physica Sinica, 2014, 63(5): 059201. doi: 10.7498/aps.63.059201
    [15] Tu Gong-Yi, Li Wei-Feng, Huang Guo-Feng, Wang Fu-Chen. Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets. Acta Physica Sinica, 2013, 62(8): 084704. doi: 10.7498/aps.62.084704
    [16] Zhu Kai-Cheng, Li Shao-Xin, Zheng Xiao-Juan, Tang Hui-Qin. Pair coherent state evolutions through parametric frequency conversion and the realization of quantized vortex states. Acta Physica Sinica, 2012, 61(19): 194206. doi: 10.7498/aps.61.194206
    [17] Lian Qi-Xiang, Guo Hui. The sweep down flow and “contra-hairpin vortex” in a turbulent boundary layer. Acta Physica Sinica, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [18] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [20] LI CUN-BIAO. ON THE FORMATION OF THE STREAMWISE VORTEX IN A TRANSITIONAL BOUNDARY LAYER. Acta Physica Sinica, 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
Metrics
  • Abstract views:  4776
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2016
  • Accepted Date:  22 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回