Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model

Wang Tong Hu Xiao-Gang Wu Ai-Min Lin Guo-Qiang Yu Xue-Wen Dong Chuang

Citation:

Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model

Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cr-C system is an important protective coating material for its high hardness, good corrosion resistance and electrical conductivity. It is also a typical eutectic system, where all stable phases are involved in the eutectic reactions. According to our previous work, binary eutectic liquids satisfy the dual-cluster short-range-order structural model, i.e., a eutectic liquid is composed of two stable liquid subunits respectively issued from the two eutectic phases and each one formulates the same ideal metallic glass [cluster] (glue atom)1 or 3, where the nearest-neighbor cluster is derived from a devitrification phase. Therefore a eutectic liquid can always be formulated as two nearest-neighbor clusters plus two, four, or six glue atoms. The key step towards understanding a eutectic composition is then to obtain the right clusters from the two eutectic phases for use in the formulation of the glassy/eutectic composition, which we call the principal clusters. In this paper, Friedel oscillation and atomic dense packing theories are adopted to identify the principal clusters of Cr-C eutectic phases for the objective of establishing the dual cluster formulas for the eutectic compositions. First, clusters in eutectic phases Cr, Cr23C6, Cr7C3 and Cr3C2 are defined by assuming that all the nearest neighbors are located within the first negative potential minimum zone in Friedel oscillation, which causes a cutoff distance to be less than 1.5 times the innermost shell distance. Second, by comparing all the radial distribution profiles of total atomic density centered by each cluster in a given phase structure, the one exhibiting the most distinct spherical periodicity feature is selected as the principal cluster. Moreover, the principal clusters are the most separated from each other among all the clusters in the same phase, showing the highest degree of cluster isolation. Under the criteria of the cluster distribution following spherical periodicity order and of the cluster isolation, the following principal clusters are derived: rhombidodecahedron CN14 [Cr-Cr14] from Cr, capped trigonal prism CN9 [C-Cr9] from Cr23C6 and Cr7C3, and [C-Cr8] from Cr3C2. Via these examples, the principal cluster identification procedures are detailed. Third, the thus selected principal clusters are matched with appropriate glue atoms to construct the dual cluster formulas for the Cr-C eutectics Cr86C14 and Cr67.4C32.6, i.e., [Cr-Cr14+C-Cr9]CrC3Cr86.2C13.8 and [C-Cr9+C-Cr8]C6Cr68.0C32.0, respectively. This work proves the universality of the cluster-plus-glue-atom model in explaining the composition of binary eutectics and lays a theoretical foundation for the composition design of Cr-C based materials.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0101206).
    [1]

    Jellad A, Labdi S, Benameur T 2009 J. Alloy. Compd. 483 464

    [2]

    Jelinek M, Kocourek T, Zemek J, Mikovsky J, Kubinov , Remsa J, Kopeček J, Jurek K 2015 Mater. Sci. Eng. C 46 381

    [3]

    Taherian R 2014 J. Power Sources 265 370

    [4]

    Wang H, Turner J A 2010 Fuel. Cells 10 510

    [5]

    Miracle D B 2006 Acta Mater. 54 4317

    [6]

    Tian H, Zhang C, Zhao J, Dong C, Wen B, Wang Q 2012 Physica B 407 250

    [7]

    Shi L L, Xu J, Ma E 2008 Acta Mater. 56 3613

    [8]

    Mudry S, Shtablavyi I, Shcherba I 2008 Arch. Mater. Sci. Eng. 34 14

    [9]

    Pasturel A, Jakse N 2011 Phys. Rev. B 84 134201

    [10]

    Sterkhova I V, Kamaeva L V 2014 J. Non-Cryst. Solids 401 241

    [11]

    Guo J, Liu L, Liu S, Zhou Y, Qi X, Ren X, Yang Q 2016 Mater. Design 106 355

    [12]

    Miracle D B 2004 Nat. Mater. 3 697

    [13]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [14]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 R273

    [15]

    Ma Y P, Dong D D, Dong C, Luo L J, Wang Q, Qiang J B, Wang Y M 2015 Sci. Rep. 5 17880

    [16]

    Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, Hussler P 2014 Philos. Mag. 94 2520

    [17]

    Dong D D, Zhang S, Wang Z J, Dong C, Hussler P 2016 Mater. Design 96 115

    [18]

    Miracle D B, Sanders W S, Senkov O N 2003 Philos. Mag. 83 2409

    [19]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002

    [20]

    Friedel J 1958 Nuovo. Cimento. 7 287

    [21]

    Hussler P 1992 Phys. Rep. 222 65

    [22]

    Pearson W B, Villars P P, Calvert L D 1985 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (Materials Park, Ohio: ASM International)

    [23]

    Du J, Wen B, Melnik R, Kawazoe Y 2014 Acta Mater. 75 113

    [24]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035

    [25]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [26]

    Oberle R, Beck H 1979 Solid State Commun. 32 959

    [27]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [28]

    Hussler P 1985 J. Phys. Colloques 46 C8-361

  • [1]

    Jellad A, Labdi S, Benameur T 2009 J. Alloy. Compd. 483 464

    [2]

    Jelinek M, Kocourek T, Zemek J, Mikovsky J, Kubinov , Remsa J, Kopeček J, Jurek K 2015 Mater. Sci. Eng. C 46 381

    [3]

    Taherian R 2014 J. Power Sources 265 370

    [4]

    Wang H, Turner J A 2010 Fuel. Cells 10 510

    [5]

    Miracle D B 2006 Acta Mater. 54 4317

    [6]

    Tian H, Zhang C, Zhao J, Dong C, Wen B, Wang Q 2012 Physica B 407 250

    [7]

    Shi L L, Xu J, Ma E 2008 Acta Mater. 56 3613

    [8]

    Mudry S, Shtablavyi I, Shcherba I 2008 Arch. Mater. Sci. Eng. 34 14

    [9]

    Pasturel A, Jakse N 2011 Phys. Rev. B 84 134201

    [10]

    Sterkhova I V, Kamaeva L V 2014 J. Non-Cryst. Solids 401 241

    [11]

    Guo J, Liu L, Liu S, Zhou Y, Qi X, Ren X, Yang Q 2016 Mater. Design 106 355

    [12]

    Miracle D B 2004 Nat. Mater. 3 697

    [13]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [14]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 R273

    [15]

    Ma Y P, Dong D D, Dong C, Luo L J, Wang Q, Qiang J B, Wang Y M 2015 Sci. Rep. 5 17880

    [16]

    Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, Hussler P 2014 Philos. Mag. 94 2520

    [17]

    Dong D D, Zhang S, Wang Z J, Dong C, Hussler P 2016 Mater. Design 96 115

    [18]

    Miracle D B, Sanders W S, Senkov O N 2003 Philos. Mag. 83 2409

    [19]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002

    [20]

    Friedel J 1958 Nuovo. Cimento. 7 287

    [21]

    Hussler P 1992 Phys. Rep. 222 65

    [22]

    Pearson W B, Villars P P, Calvert L D 1985 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (Materials Park, Ohio: ASM International)

    [23]

    Du J, Wen B, Melnik R, Kawazoe Y 2014 Acta Mater. 75 113

    [24]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035

    [25]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [26]

    Oberle R, Beck H 1979 Solid State Commun. 32 959

    [27]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [28]

    Hussler P 1985 J. Phys. Colloques 46 C8-361

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang. First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [3] Zhang Chao-Jiang, Xu Hong-Guang, Xu Xi-Ling, Zheng Wei-Jun. Electronic structures, chemical bonds, and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters: Anion photoelectron spectroscopy and theoretical calculations. Acta Physica Sinica, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [4] Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong. Molecule-like structural units in silicate-glass-forming oxides. Acta Physica Sinica, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [5] Ma Qi-Hui, Zhang Yu, Wang Qing, Dong Hong-Gang, Dong Chuang. Cluster formulas of Co-Al-W-base superalloys. Acta Physica Sinica, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [6] Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying. Experimental study of clustering behaviors in granular gases. Acta Physica Sinica, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [7] Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang. Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys. Acta Physica Sinica, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [8] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [9] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] Xu Zhi-Xin, Li Jia-Yun, Sun Min-Hua, Yao Xiu-Wei. Structure and dynamics in the crystallization of Ni500 nanocluster. Acta Physica Sinica, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [11] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [12] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [13] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] Zheng Xiao-Jun, Zhang Jun, Huang Zhong-Bing. Optimized structure and thermodynamic properties of atomic clusters in the framework of the extended Hubbard model. Acta Physica Sinica, 2010, 59(6): 3897-3904. doi: 10.7498/aps.59.3897
    [15] Lu Qi-Liang, Luo Qi-Quan, Chen Li-Li. Density functional theory study of hydrogen adsorption on C@Al12 cluster. Acta Physica Sinica, 2010, 59(1): 234-238. doi: 10.7498/aps.59.234
    [16] Chang De-Yuan, Zheng Kai, Wei Yan, Li Bin, Fu Yong-Jun, Wei Huai, Jian Shui-Sheng. Experimental research on the degree of clustering in Bi3+-Ga3+ co-doped high concentration Er3+-doped silica-based fiber. Acta Physica Sinica, 2008, 57(1): 556-560. doi: 10.7498/aps.57.556
    [17] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [18] Wang Yin, Li Peng, Ning Xi-Jing. Molecular dynamics study on self-assembly of C36 clusters. Acta Physica Sinica, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [19] LIN JING-QUAN, ZHANG JIE, LI YING-JUN, CHEN LI-MING, Lü TIE-ZHENG, TENG HAO. ABSORPTION OF FEMTOSECOND LASER PULSES BY ATOMIC CLUSTERS. Acta Physica Sinica, 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
    [20] LI JUN, GONG XIAO-MIN, LI JIA-MING. THEORETICAL STUDY ON ELECTRONIC STRUCTURE OF COBALT CLUSTERS. Acta Physica Sinica, 1995, 44(11): 1727-1733. doi: 10.7498/aps.44.1727
Metrics
  • Abstract views:  5779
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2016
  • Accepted Date:  03 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回