Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model

Ma Ping Shi An-Hua Yang Yi-Jian Yu Zhe-Feng Liang Shi-Chang Huang Jie

Citation:

Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model

Ma Ping, Shi An-Hua, Yang Yi-Jian, Yu Zhe-Feng, Liang Shi-Chang, Huang Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The plasma sheath and wake flow of the hypersonic vehicle can affect the electromagnetic scattering characteristics of the reentry targets when they pass through the earth atmosphere at high speed. In order to study the similarity between the wake and the characteristic of the model launched at high velocity, the simulation experiments on the electromagnetic scattering characteristics of the spherical models made of Al2O3 and their wakes are carried out under the same binary scaling parameters in the ballistic range. The models are launched by the two-stage light-gas gun. The diameters of the models are 8 mm, 10 mm, 12 mm and 15 mm, respectively, while the pressures of the target chamber are 6.3 kPa, 5.0 kPa, 4.2 kPa and 3.3 kPa, respectively. The shock standoff distance is obtained by the shadow graph system. The electron density distribution of the wake is measured by the electron density measurement system. The RCS distribution of the wake and the model are acquired by X band monostatic radars, whose visual angle is 40. The results show that the shock standoff distance gradually increases with the increasing of the model dimension under the conditions of the same velocity and binary scaling parameters. The wake electron densities of different models are similar in their variation trends and orders of magnitude. The wake flow field of the different models with high velocity are the same as the results predicted by the double scale laws. The RCS distributions and total RCS of the wake of the models are different from each other. The electromagnetic scattering properties of the wake flow field of the various models do not conform with the predicted results obtained from the double scale law. The electromagnetic scattering energy is distributed over the regions of the models made up of aluminium oxide and the wake zones. There appears to be one center of the electromagnetic scattering energy in the area of the model coated with flow field, while several centers emerge in the region of the wake. The measuring signals of the RCS of the models show a random distribution, because the amplitude variation of the RCS and the frequency change of the RCS are random. The total RCS of the model increases with the increase of the model dimension, but the variation range of ripple frequency decreases with the increase of the model dimension.
      Corresponding author: Ma Ping, hbmaping@263.net
    [1]

    Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]

    [2]

    Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]

    [3]

    Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]

    [4]

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]

    [5]

    Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]

    [6]

    Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]

    [7]

    Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]

    [8]

    Martin J J 1966 Atomosph. Reentry 264

    [9]

    Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [10]

    Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]

    [11]

    Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [12]

    Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]

    [13]

    Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]

    [14]

    Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]

    [15]

    Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]

    [16]

    Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference

    [17]

    Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference

    [18]

    Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445

    [19]

    Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76

    [20]

    Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905

    [21]

    Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)

    [22]

    Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]

    [23]

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205]

    [24]

    Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]

  • [1]

    Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]

    [2]

    Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]

    [3]

    Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]

    [4]

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]

    [5]

    Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]

    [6]

    Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]

    [7]

    Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]

    [8]

    Martin J J 1966 Atomosph. Reentry 264

    [9]

    Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [10]

    Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]

    [11]

    Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [12]

    Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]

    [13]

    Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]

    [14]

    Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]

    [15]

    Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]

    [16]

    Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference

    [17]

    Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference

    [18]

    Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445

    [19]

    Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76

    [20]

    Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905

    [21]

    Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)

    [22]

    Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]

    [23]

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205]

    [24]

    Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Study on the influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231733
    [2] Wang Yuan-Yuan, Wang Xian-Zhi, Song Jia-Jun, Zhang Xu, Wang Zhao-Hua, Wei Zhi-Yi. Amplification mechanism in stimulated Raman backward scattering of ultraintense laser in uniform plasma. Acta Physica Sinica, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [3] Yuan Qian, Zhou Pei-Yang, He Zi, Chen Xue-Wen, Ding Da-Zhi. High-efficient analysis of metal target electromagnetics above the half-space based on mixed field integral equation. Acta Physica Sinica, 2022, 71(11): 114101. doi: 10.7498/aps.71.20212152
    [4] Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode. Acta Physica Sinica, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [5] Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong. Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding. Acta Physica Sinica, 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [6] Ma Hao-Jun, Wang Guo-Lin, Luo Jie, Liu Li-Ping, Pan De-Xian, Zhang Jun, Xing Ying-Li, Tang Fei. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma. Acta Physica Sinica, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [7] Zhang Peng, Hong Yan-Ji, Ding Xiao-Yu, Shen Shuang-Yan, Feng Xi-Ping. Effect of plasma on boron-based two-phase flow diffusion combustion. Acta Physica Sinica, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [8] Jin Ming, Wei Xiao, Wu Yang, Zhang Yu-Huai, Yu Xi-Long. Backscattering measurements of plasma coated target in high-enthalpy wind tunnel. Acta Physica Sinica, 2015, 64(20): 205205. doi: 10.7498/aps.64.205205
    [9] Chen Wen-Bo, Gong Xue-Yu, Lu Xing-Qiang, Feng Jun, Liao Xiang-Bai, Huang Guo-Yu, Deng Xian-Jun. Analysis of one-dimensional electromagnetic wave transmission characteristics of plasma based on a kinetic theory model. Acta Physica Sinica, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [10] Wang Qi-Guang, Su Hai-Jing, Zhi Rong, Feng Ai-Xia. The analogy and predictability of the forecasting model error for the precipitation over the mid-lower reaches of the Yangtze River in summer. Acta Physica Sinica, 2014, 63(11): 119202. doi: 10.7498/aps.63.119202
    [11] Jiang Wen-Zheng, Yuan Ye-Li, Wang Yun-Hua, Zhang Yan-Min. Investigation on Doppler spectra of microwave scattering from sea surface. Acta Physica Sinica, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [12] Zheng Ling, Zhao Qing, Luo Xian-Gang, Ma Ping, Liu Shu-Zhang, Huang Cheng, Xing Xiao-Jun, Zhang Chun-Yan, Chen Xu-Lin. Theoretical and experimental studies of electromagnetic wave transmission in plasma. Acta Physica Sinica, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [13] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [14] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [15] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [16] Guo Li-Xin, Wang Yun-Hua, Wu Zhen-Sen. Application of the equivalence principle and the reciprocity theorem to electromagnetic scattering from two adjacent spherical objects. Acta Physica Sinica, 2006, 55(11): 5815-5823. doi: 10.7498/aps.55.5815
    [17] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [18] Nie Zai-Ping, Wang Hao-Gang. Globalized numerical modeling of electromagnetic scattering from conductive targ ets with open cavity and electrically large size. Acta Physica Sinica, 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
    [19] Zhang Jun, Zhang Jie, Chen Qing, Peng Lian-Mao, Cang Yu, Wang Huai-Bin, Zhong Jia-Yong. . Acta Physica Sinica, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
Metrics
  • Abstract views:  5167
  • PDF Downloads:  219
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2017
  • Accepted Date:  14 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回