Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibration states and entropy of adsorbed hydrogen molecules

Wang Xiao-Xia Liu Xin Zhang Qiong Chen Hong-Shan

Citation:

Vibration states and entropy of adsorbed hydrogen molecules

Wang Xiao-Xia, Liu Xin, Zhang Qiong, Chen Hong-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The entropy and enthalpy changes upon absorption determine the equilibrium adsorption states, the adsorption/desorption kinetics, and the surface reaction rates. However, it is difficult to measure experimentally or calculate theoretically the entropy of adsorption state. Hydrogen is considered as the most promising candidate to solve the global energy problems, and the storage by adsorption on light porous solids constitutes a main avenue to research field. An ideal storage system should be able to operate under ambient conditions with high recycling capacity and suitable uptake-release kinetics. The entropy of adsorbed H2 molecules is of great significance for determining the optimum conditions for hydrogen storage and for designing the storage materials. To the best of our knowledge, however, the only report on the entropy of the adsorbed H2 molecules is that adsorbed on alkali-metal exchanged zeolites at temperatures around 100 K. Due to different assumptions of the entropy changes, the values of the optimum enthalpy H reported in the publications cover a wide range. In this paper, the adsorption states, vibrational modes, and the entropies of H2 molecules adsorbed on (MgO)9 and (AlN)12 clusters are studied by using first principal method. The computation is performed by the second-order perturbation theory (MP2) with the triple zeta basis set including polarization functions 6-311G(d, p). The very-tight convergence criterion is used to obtain reliable vibration frequencies. Analysis shows that six vibrational modes of the adsorption complexes can be attributed to the vibration of H2 molecule. For these normal modes, the amplitudes of the displacements of cluster atoms are usually two orders smaller than those of the hydrogen atoms. As the vibrational frequency is inversely proportional to the square root of the mass, the zero-point energy has an important influence on the adsorption energy. The ZPE correction exceeds half of the adsorption energy, and the adsorption on the anions is not stable after including the correction. Under the harmonic approximation, the normal vibration modes are independent, so the entropy of adsorbed H2 molecules can be calculated by using the vibrational partition function based on the vibrational frequencies. The results indicate that the entropy values depend mainly on the two lowest in-phase vibrational frequencies and it is not directly related to the adsorption strength but determined by the shape of the potential energy surface. In a temperature range of 70350 K and at a pressure of 0.1 MPa, there is a good linear correlation between the entropy of adsorbed H2 and the entropy of gas-phase. The entropy of H2 decreases about 10.2R after adsorption.
      Corresponding author: Chen Hong-Shan, chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164024, 11164034).
    [1]

    Campbell C T, Sellers J R 2012 J. Amer. Chem. Soc. 134 18109

    [2]

    de Moor B A, Ghysels A, Reyniers M F, van S V, Waroquier M, Marin G B 2011 J. Chem. Theory Comput. 7 1090

    [3]

    Simon C M, Kim J, Lin L C, Martin R L, Haranczyk M, Smit B 2014 Phys. Chem. Chem. Phys. 16 5499

    [4]

    Efremenko I, Sheintuch M 2005 Langmuir 21 6282

    [5]

    Yang J, Sudik A, Wolverton C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [6]

    Tang W S, Chotard J N, Raybaud P, Janot R 2014 J. Phys. Chem. C 118 3409

    [7]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688

    [8]

    Otero Areán C, Nachtigallová D, Nachtigall P, Garrone E, Rodríguez Delgado M 2007 Phys. Chem. Chem. Phys. 9 1421

    [9]

    Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S 2003 J. Chem. Phys. 119 2376

    [10]

    Garberoglio G, Skoulidas A I, Jognson J K 2005 J. Phys. Chem. B 109 13094

    [11]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618

    [12]

    Hehre W J, Pople J A 1972 J. Chem. Phys. 56 4233

    [13]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [14]

    Wang Z C 2008 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p192 (in Chinese) [汪志成 2008 热力学统计物理(北京: 高等教育出版社) 第192页]

    [15]

    Larese J Z, Arnold T, Frazier L, Hinde R J, Ramirez-Cuesta A J 2008 Phys. Rev. Lett. 101 165302

    [16]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2009 ACS Nano 3 621

    [17]

    Zhang Y, Chen H S, Yin Y H, Song Y 2014 J. Phys. B 47 025102

    [18]

    Dong R, Chen X S, Wang X F, Lu W 2008 J. Chem. Phys. 129 044705

    [19]

    Liu Z F, Wang X Q, Liu G B, Zhou P, Sui J, Wang X F, Zhu H J, Hou Z 2013 Phys. Chem. Chem. Phys. 15 8186

    [20]

    Yong Y L, Song B, He P 2011 Phys. Chem. Chem. Phys. 13 16182

    [21]

    Okamoto Y, Miyamoto Y 2001 J. Phys. Chem. B 105 3470

    [22]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Amer. Chem. Soc. 127 14582

    [23]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [24]

    Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [25]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Amer. Chem. Soc. 128 9741

    [26]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

  • [1]

    Campbell C T, Sellers J R 2012 J. Amer. Chem. Soc. 134 18109

    [2]

    de Moor B A, Ghysels A, Reyniers M F, van S V, Waroquier M, Marin G B 2011 J. Chem. Theory Comput. 7 1090

    [3]

    Simon C M, Kim J, Lin L C, Martin R L, Haranczyk M, Smit B 2014 Phys. Chem. Chem. Phys. 16 5499

    [4]

    Efremenko I, Sheintuch M 2005 Langmuir 21 6282

    [5]

    Yang J, Sudik A, Wolverton C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [6]

    Tang W S, Chotard J N, Raybaud P, Janot R 2014 J. Phys. Chem. C 118 3409

    [7]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688

    [8]

    Otero Areán C, Nachtigallová D, Nachtigall P, Garrone E, Rodríguez Delgado M 2007 Phys. Chem. Chem. Phys. 9 1421

    [9]

    Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S 2003 J. Chem. Phys. 119 2376

    [10]

    Garberoglio G, Skoulidas A I, Jognson J K 2005 J. Phys. Chem. B 109 13094

    [11]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618

    [12]

    Hehre W J, Pople J A 1972 J. Chem. Phys. 56 4233

    [13]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [14]

    Wang Z C 2008 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p192 (in Chinese) [汪志成 2008 热力学统计物理(北京: 高等教育出版社) 第192页]

    [15]

    Larese J Z, Arnold T, Frazier L, Hinde R J, Ramirez-Cuesta A J 2008 Phys. Rev. Lett. 101 165302

    [16]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2009 ACS Nano 3 621

    [17]

    Zhang Y, Chen H S, Yin Y H, Song Y 2014 J. Phys. B 47 025102

    [18]

    Dong R, Chen X S, Wang X F, Lu W 2008 J. Chem. Phys. 129 044705

    [19]

    Liu Z F, Wang X Q, Liu G B, Zhou P, Sui J, Wang X F, Zhu H J, Hou Z 2013 Phys. Chem. Chem. Phys. 15 8186

    [20]

    Yong Y L, Song B, He P 2011 Phys. Chem. Chem. Phys. 13 16182

    [21]

    Okamoto Y, Miyamoto Y 2001 J. Phys. Chem. B 105 3470

    [22]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Amer. Chem. Soc. 127 14582

    [23]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [24]

    Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [25]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Amer. Chem. Soc. 128 9741

    [26]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying. Experimental study of clustering behaviors in granular gases. Acta Physica Sinica, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [3] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [4] Li Wen-Jie, Yang Hui-Hui, Chen Hong-Shan. Dissociation of H2 on Al7- cluster studied by ab initio calculations. Acta Physica Sinica, 2013, 62(5): 053601. doi: 10.7498/aps.62.053601
    [5] Yao Jian-Gang, Gong Bao-An, Wang Yuan-Xu. Dissociative adsorptions of NO on Yn (n=1–12) clusters. Acta Physica Sinica, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [6] Chen Ji-Xiang, Qiang Jian-Bing, Wang Qing, Dong Chuang. Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Physica Sinica, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [7] Cheng Xin-Lu, Zhang Hong, Feng Cheng-Yi. Superfluidity and quantum localization of para-H2 clusters and ortho-D2 clusters. Acta Physica Sinica, 2011, 60(1): 013602. doi: 10.7498/aps.60.013602
    [8] Chen Hong-Shan, Chen Hua-Jun. Adsorption of H2 on MgO clusters studied by ab initio method. Acta Physica Sinica, 2011, 60(7): 073601. doi: 10.7498/aps.60.073601
    [9] Han Xiao-Jing, Wang Yin, Lin Zheng-Zhe, Zhang Wen-Xian, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the growth probabilities for cluster isomers. Acta Physica Sinica, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [10] Zhang Lin, Xu Song-Ning, Li Wei, Sun Hai-Xia, Zhang Cai-Bei. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [11] Zhou Shi-Yun, Wang Yin, Ning Xi-Jing. A quasi-dynamics method for searching for cluster isomers. Acta Physica Sinica, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [12] Yang Ming, Liu Jian-Sheng, Cai Yi, Wang Wen-Tao, Wang Cheng, Ni Guo-Quan, Li Ru-Xin, Xu Zhi-Zhan. Diagnosis and investigation of the formation of low density and large sized clusters. Acta Physica Sinica, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [13] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [14] Xiao Xue, Li Hai-Yang, Luo Xiao-Lin, Niu Dong-Mei, Wen Li-Hua, Wang Bin, Liang Feng, Hou Ke-Yong, Dong Can, Shao Shi-Yong. Cluster-assisted multiple ionization of acetone by intense nanosecond laser. Acta Physica Sinica, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [15] He Chun-Long, Yuan Zhe, Shen Xu-Yang, Xu Ya-Ge, Li Jia-Ming. Optimum valence bond scheme: theoretical study of small clusters of elements in the second and third row of periodic table. Acta Physica Sinica, 2006, 55(1): 162-170. doi: 10.7498/aps.55.162
    [16] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] Yuan Zhe, He Chun-Long, Wang Xiao-Lu, Liu Hai-Tao, Li Jia-Ming. First-principle molecular dynamics study of clusters:optimum valence bond scheme. Acta Physica Sinica, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [18] Xiao Xue, Li Hai-Yang, Luo Xiao-Lin, Niu Dong-Mei, Wen Li-Hua, Wang Bin, Liang Feng, Hou Ke-Yong, Zhang Na-Zhen. Cluster-assisted multiple ionization of CS2 by intense nanosecond laser beam. Acta Physica Sinica, 2005, 54(11): 5098-5103. doi: 10.7498/aps.54.5098
    [19] Yang Chao-Wen, V.A. Khodyrev, V.S. Kulikauskas. Measurement of the backscattering yields for protons of H+2, H+3 cluster ions in channeling condition. Acta Physica Sinica, 2003, 52(8): 1895-1900. doi: 10.7498/aps.52.1895
    [20] WANG FENG, ZHANG FENG-SHOU, XIAO GUO-QING, ZHU ZHI-YUAN. RESPONSE OF IRRADIATED Na2 BY STRONG ULTRASHORT LASER PULSE. Acta Physica Sinica, 2001, 50(4): 667-673. doi: 10.7498/aps.50.667
Metrics
  • Abstract views:  6743
  • PDF Downloads:  753
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2016
  • Accepted Date:  10 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回