Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface morphology improvement of homoepitaxial GaN grown on free-standing GaN substrate by metalorganic chemical vapor deposition

Li Zhong-Hui Luo Wei-Ke Yang Qian-Kun Li Liang Zhou Jian-Jun Dong Xun Peng Da-Qing Zhang Dong-Guo Pan Lei Li Chuan-Hao

Citation:

Surface morphology improvement of homoepitaxial GaN grown on free-standing GaN substrate by metalorganic chemical vapor deposition

Li Zhong-Hui, Luo Wei-Ke, Yang Qian-Kun, Li Liang, Zhou Jian-Jun, Dong Xun, Peng Da-Qing, Zhang Dong-Guo, Pan Lei, Li Chuan-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Free-standing GaN is generally regarded as an ideal substrate for GaN-based devices due to its advantage of low threading dislocation density (TDD) and good thermal conductivity. However, new surface features such as hillocks and ridges appear on the GaN homoepitaxy films. In this paper, the influences of the intermediate GaN (IM-GaN) layer on the surface defects and crystal quality of GaN homoepitaxy films grown on c-plane GaN substrates by metalorganic chemical vapor deposition are investigated. It is found that hexagonal hillocks and ridges on the surface can be avoided by inserting an IM-GaN layer grown at an intermediate temperature (650850℃), prior to the growth of GaN at 1050℃. The results based on X-ray diffraction (XRD) measurements and differential interference contrast microscopy images demonstrate that the growth temperature of the IM-GaN layer has a significant influence on GaN homoepitaxy layer, which is one of the most critical parameters determining the surface morphology and crystal quality. As the IM-GaN growth temperature decreases from 1050℃ to 650℃, thed densities of hillocks and ridges on the surface reduce gradually. While, the XRD full width at half maximum (FWHM) values of (002) and (102) peaks for the homoepitaxy films are increased rapidly, indicating the adding of the TDD in the films. The atomic force microscopy (AFM) images show that the quasi-step growth mode change into layer-layer growth mode with the growth temperature decreasing from 1050℃ to 650℃ during the IM-GaN layer growing. It is speculated that the growth mode is determined by the diffusion length of adatom on the growing surface, which is proportional to the growth temperature. In the case of IM-GaN grown at low temperature, the formation of hillocks can be suppressed by reducing the adatom diffusion length. Finally, High crystal quality GaN homoepitaxy films (2 m) without hillocks is achieved by optimizing the growth parameters of IM-GaN layer, which is about 150 nm in thickness and grown at 850℃. The crystal quality of GaN homoepitaxy film is assessed by XRD rocking curve measured with double-crystal optics. The FWHMs of the (002) and (102) peaks are 125arcsec and 85arcsec respectively, indicating that rather low TDD is formed in the film. And well defined steps are observed on the image of AFM test, the root-mean square roughness value of the which is only about 0.23 nm for 5 m5 m scan area.
      Corresponding author: Luo Wei-Ke, luowk688@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505181, 61474101, 61504125), the National High Technology Research and Development Program of China (Grant Nos. 2015AA016800, 2015AA033300) and the National Key Research and Development Program of China (Grant No. 2016YFB0400902).
    [1]

    Palacios T, Chakraborty A, Rajan S, Rajan S, Poblenz C, Keller S, DenBaars S P, Speck J S, Mishra U K 2005 IEEE Elec. Dev. Lett. 26 781

    [2]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [3]

    Limb J B, Xing H, Moran B, McCarthy L, DenBaars S P, Mishra U K 2000 Appl. Phys. Lett. 76 2457

    [4]

    Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T, Su S C 2016 Chin. Phys. B 25 088505

    [5]

    LiuY L, Jin P, Liu G, Wang WY, Qi Z Q, Chen C Q, Wang Z G 2016 Chin. Phys. B 25 087801

    [6]

    Kikkawa T 2005 Jpn. J. Appl. Phys. 44 4896

    [7]

    Zhang J Q, Wang L, Li L A, Wang Q P, Jiang Y, Zhu H C, Ao J P 2016 Chin. Phys. B 25

    [8]

    Duan X L, Zhang J C, Xiao M, Zhao Y, Ning J, Hao Y 2016 Chin. Phys. B 25 087304

    [9]

    Killat N, Montes M, Paskova T, Evans K R, Leach J, Li X, Özgr , Morkoç H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D, Kuball M 2013 Appl. Phys. Lett. 103 193507

    [10]

    Oehlern F, Zhu T, Kappers M J, Kappers M J, Humphreys C J, Oliver R A 2013 J. Cryst. Growth 383 12

    [11]

    Zhou K, Liu J, Zhang S M, Li Z C, Feng M X, Li D Y, Zhang L Q, Wang F, Zhu J J, Yang H 2013 J. Cryst. Growth 371 7

    [12]

    Kizilyalli I C, Buiquang P, Disney D, Bhatia H, Aktas O 2015 Microelectron. Reliab. 55 1654

    [13]

    Kubo S, Nanba Y, Okazaki T, Manabe S, Kurai S, Taguchi T 2002 J. Cryst. Growth 236 66

    [14]

    Leszczynskia M, Beaumont B, Frayssinet E, Knap W, Prystawko P, Suski T, Grzegory T, Porowski S 1999 Appl. Phys. Lett. 75 1276

    [15]

    Okada S, Miyake H, Hiramatsu K, Miyagawa R, Eryu O, Hashizume T 2016 Jpn. J. Appl. Phys. 55 01AC08

    [16]

    Cho Y, Ha J S, Jung M, Lee H J, Park S, Park J, Fujii K, Toba R, Yi S, Kil G S, Chang J, Yao T 2010 J. Cryst. Growth 312 1693

    [17]

    Tian W, Yan W Y, Dai J N, Li S L, Tian Y, Hui X, Zhang J B, Fang Y Y, Wu Z H, Chen C Q 2013 J. Phys. D: Appl. Phys. 46 065303

    [18]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [19]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [20]

    Scheel H J 2001 J. Cryst. Growth 211 1

    [21]

    Tanabe S, Watanabe N, Uchida N, Matsuzaki H 2016 Phys. Status Solidi A 213 1236

    [22]

    Corrion A L, Wu F, Speck J S 2012 J. Appl. Phys. 112 054903

    [23]

    Perret E, Highland M J, Stephenson G B, Streiffer S K, Zapol P, Fuoss P H, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

  • [1]

    Palacios T, Chakraborty A, Rajan S, Rajan S, Poblenz C, Keller S, DenBaars S P, Speck J S, Mishra U K 2005 IEEE Elec. Dev. Lett. 26 781

    [2]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [3]

    Limb J B, Xing H, Moran B, McCarthy L, DenBaars S P, Mishra U K 2000 Appl. Phys. Lett. 76 2457

    [4]

    Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T, Su S C 2016 Chin. Phys. B 25 088505

    [5]

    LiuY L, Jin P, Liu G, Wang WY, Qi Z Q, Chen C Q, Wang Z G 2016 Chin. Phys. B 25 087801

    [6]

    Kikkawa T 2005 Jpn. J. Appl. Phys. 44 4896

    [7]

    Zhang J Q, Wang L, Li L A, Wang Q P, Jiang Y, Zhu H C, Ao J P 2016 Chin. Phys. B 25

    [8]

    Duan X L, Zhang J C, Xiao M, Zhao Y, Ning J, Hao Y 2016 Chin. Phys. B 25 087304

    [9]

    Killat N, Montes M, Paskova T, Evans K R, Leach J, Li X, Özgr , Morkoç H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D, Kuball M 2013 Appl. Phys. Lett. 103 193507

    [10]

    Oehlern F, Zhu T, Kappers M J, Kappers M J, Humphreys C J, Oliver R A 2013 J. Cryst. Growth 383 12

    [11]

    Zhou K, Liu J, Zhang S M, Li Z C, Feng M X, Li D Y, Zhang L Q, Wang F, Zhu J J, Yang H 2013 J. Cryst. Growth 371 7

    [12]

    Kizilyalli I C, Buiquang P, Disney D, Bhatia H, Aktas O 2015 Microelectron. Reliab. 55 1654

    [13]

    Kubo S, Nanba Y, Okazaki T, Manabe S, Kurai S, Taguchi T 2002 J. Cryst. Growth 236 66

    [14]

    Leszczynskia M, Beaumont B, Frayssinet E, Knap W, Prystawko P, Suski T, Grzegory T, Porowski S 1999 Appl. Phys. Lett. 75 1276

    [15]

    Okada S, Miyake H, Hiramatsu K, Miyagawa R, Eryu O, Hashizume T 2016 Jpn. J. Appl. Phys. 55 01AC08

    [16]

    Cho Y, Ha J S, Jung M, Lee H J, Park S, Park J, Fujii K, Toba R, Yi S, Kil G S, Chang J, Yao T 2010 J. Cryst. Growth 312 1693

    [17]

    Tian W, Yan W Y, Dai J N, Li S L, Tian Y, Hui X, Zhang J B, Fang Y Y, Wu Z H, Chen C Q 2013 J. Phys. D: Appl. Phys. 46 065303

    [18]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [19]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [20]

    Scheel H J 2001 J. Cryst. Growth 211 1

    [21]

    Tanabe S, Watanabe N, Uchida N, Matsuzaki H 2016 Phys. Status Solidi A 213 1236

    [22]

    Corrion A L, Wu F, Speck J S 2012 J. Appl. Phys. 112 054903

    [23]

    Perret E, Highland M J, Stephenson G B, Streiffer S K, Zapol P, Fuoss P H, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

  • [1] Ma Meng-Yu, Yu Cui, He Ze-Zhao, Guo Jian-Chao, Liu Qing-Bin, Feng Zhi-Hong. Growth and Surface Structrue Research of Hydrogen Terminal Diamond Thin Films. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240053
    [2] Li Jian-Jun, Cui Yu-Zheng, Fu Cong-Le, Qin Xiao-Wei, Li Yu-Chang, Deng Jun. Optimization theory and application of epitaxial layer thickness uniformity in vertical MOCVD reaction chamber with multiple MO nozzles. Acta Physica Sinica, 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [3] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [4] Zhang Zhi-Rong, Fang Yu-Long, Yin Jia-Yun, Guo Yan-Min, Wang Bo, Wang Yuan-Gang, Li Jia, Lu Wei-Li, Gao Nan, Liu Pei, Feng Zhi-Hong. Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates. Acta Physica Sinica, 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [5] Wang Bao-Zhu, Zhang Xiu-Qing, Zhang Ao-Di, Zhou Xiao-Ran, Bahadir Kucukgok, Na Lu, Xiao Hong-Ling, Wang Xiao-Liang, Ian T. Ferguson. Room-temperature thermoelectric properties of GaN thin films grown by metal organic chemical vapor deposition. Acta Physica Sinica, 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [6] Zhu Shun-Ming, Gu Ran, Huang Shi-Min, Yao Zheng-Grong, Zhang Yang, Chen Bin, Mao Hao-Yuan, Gu Shu-Lin, Ye Jian-Dong, Zheng You-Dou. Influence and mechanism of H2 in the epitaxial growth of ZnO using metal-organic chemical vapor deposition method. Acta Physica Sinica, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [7] Zhu Li-Hong, Cai Jia-Fa, Li Xiao-Ying, Deng Biao, Liu Bao-Lin. Luminous performance improvement of InGaN/GaN light-emitting diodes by modulating In content in well layers. Acta Physica Sinica, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [8] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [10] Cui Ying-Chao, Xie Zi-Li, Zhao Hong, Mei Qin, Li Yi, Liu Bin, Song Li-Hong, Zhang Rong, Zheng You-Dou. Morphology and defect of a-GaN grown by metal orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(12): 8506-8510. doi: 10.7498/aps.58.8506
    [11] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [12] Liu Qi-Jia, Shao Yong, Wu Zhen-Long, Xu Zhou, Xu Feng, Liu Bin, Xie Zi-Li, Chen Peng. Influence of growth temperature on properties of AlGaInN quaternary epilayers. Acta Physica Sinica, 2009, 58(10): 7194-7198. doi: 10.7498/aps.58.7194
    [13] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [14] Wang Ye-An, Qin Fu-Wen, Wu Dong-Jiang, Wu Ai-Min, Xu Yin, Gu Biao. Analysis of diluted magnetic semiconductor GaMnN grown by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition. Acta Physica Sinica, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [15] Wang Guo-Dong, Zhang Wang, Zhang Wen-Hua, Li Zong-Mu, Xu Fa-Qiang. Synchrotron radiation photoemission studies on Fe/ZnO(0001) interface. Acta Physica Sinica, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [16] Wang Hao, Zeng Gu-Cheng, Liao Chang-Jun, Cai Ji-Ye, Zheng Shu-Wen, Fan Guang-Han, Chen Yong, Liu Song-Hao. Study on the metamorphosis of InP self-organized islands grown on GaxxIn1-x1-xP buffer layers. Acta Physica Sinica, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [17] Ma Hong, Zhu Guang-Xi, Chen Si-Hai, Yi Xin-Jian. MOVPE growth of 1310?nm polarizationinsensitive strained quantumwell semiconductor optical amplifiers*. Acta Physica Sinica, 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [18] Chen Dun-Jun, Shen Bo, Zhang Kai-Xiao, Deng Yong-Zhen, Fan Jie, Zhang Rong, Shi Yi, Zheng You-Dou. Structural properties of GaN1-xPx films. Acta Physica Sinica, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
    [19] LU LI-WU, ZHOU JIE, FENG SONG-LIN, DUAN SHU-KUN. DEEP LEVEL STUDIES OF Ga1-xInxAs/InP LASERS GROWN BY LP-MOVPE. Acta Physica Sinica, 1994, 43(5): 779-784. doi: 10.7498/aps.43.779
    [20] QI MING, J. SHIRAKASHI, E. TOKUMITSU, S. NOZAKI, M. KONAGAI, K. TAKAHASHI, LUO JIN-SHENG. MOMBE GROWTH OF CARBON DOPED p-TYPE GaAs AND InGaAs. Acta Physica Sinica, 1993, 42(12): 1956-1962. doi: 10.7498/aps.42.1956
Metrics
  • Abstract views:  5105
  • PDF Downloads:  248
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2016
  • Accepted Date:  09 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回