Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition

Gu Qian-Qian Ruan Ying Dai Fu-Ping

Citation:

Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition

Gu Qian-Qian, Ruan Ying, Dai Fu-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High temperature Fe-Al-Nb alloys will be prospectively applied to the industrial field, i.e., aviation, gas turbine, etc. In this paper, rapid solidification of Fe67.5Al22.8Nb9.7 ternary alloy under microgravity condition is realized by using drop tube containerless processing technique. Our purpose is to investigate the microstructural transition pattern and relevant micromechanical properties, and then to reveal the influence of rapid eutectic growth on application performance. The sample of 2 g is placed in a quartz tube with an orifice at the bottom, and the quartz tube is then placed at the top of 3 m drop tube. The sample is inductively melted and further superheated to a certain temperature with the protecting mixture gas composed of argon and helium. The alloy melt is ejected through the orifice by an argon gas flow and dispersed into fine droplets. The droplets are undercooled and finally rapidly solidified during their free fall in the drop tube. The alloy droplets with the diameter sizes ranging from 40 to 1000 m are achieved. The liquidus temperature of the alloy is 1663 K. The microstructure of the alloy consists of Nb(Fe, Al)2 and (Fe) phases. In the master alloy prepared by arc melting, the segregation along the gravity direction takes place because of the difference in cooling rate inside the master alloy. By comparison, the microstructures of the alloy droplets are homogeneous. The variations of thermodynamical parameters with droplet size are analyzed. As droplet diameter decreases, its Nusselt and Reynolds numbers rise from 3 to 8 and from 5 to 137, respectively, its undercooling and cooling rate increase from 50 to 216 K and from 1.23103 to 5.53105 K s-1 respectively. This causes the corresponding microstructural transition. A small amount of primary Nb(Fe, Al)2 phase transforms from dendrite to equiaxed grain, the lamellar eutectic is replaced by the fragmented eutectic. The relationship between eutectic interlamellar spacing and undercooling satisfies an exponential equation, indicating that the eutectic is refined by three times. Consequently, mainly owing to the eutectic refinement, the microhardness of the alloy increases by 10% with the increase of undercooling according to the Hall-Petch behavior in terms of both eutectic grain size and interlamellar spacing. Compared with the microstructure of the alloy undercooled to the same level under electromagnetic levitation in our recent work, the microstructure in drop tube is more refined due to the larger cooling rate, contributing to the microhardness of the alloy increasing by 2%-6%.
      Corresponding author: Ruan Ying, ruany@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, U1660108, 51671161), the Aviation Science Foundation of China (Grant No. 2014ZF53069) and Shaanxi Industrial Science and Technology Project, China (Grant No. 2016GY-247).
    [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

Metrics
  • Abstract views:  4591
  • PDF Downloads:  261
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2017
  • Accepted Date:  02 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回