Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-infrared luminescence properties of small-sized homogeneous/heterogeneous core/shell structured NaGdF4:Nd3+ nanoparticles

Ma Wen-Jun You Fang-Tian Peng Hong-Shang Huang Shi-Hua

Citation:

Near-infrared luminescence properties of small-sized homogeneous/heterogeneous core/shell structured NaGdF4:Nd3+ nanoparticles

Ma Wen-Jun, You Fang-Tian, Peng Hong-Shang, Huang Shi-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, considerable researches have focused on the upconversion phosphor nanoparticles in the application of biomedical imaging, which emit visible light. Nevertheless, these kinds of nanoparticles limit the light penetration depth and imaging quality. The Nd3+ doped nanoparticles excited and emitted in a spectral range of 700-1100~nm can overcome those shortcomings. Furthermore, considering the applications of rare earth nanoparticles in biomedical imaging, smaller particle size is needed. However, the luminescence efficiencies of nano-structured materials are lower due to the inherent drawback of high sensitivity of Nd3+ ions to the surface defects. So, it is of vital importance for introducing a shell with low phonon energy to be overgrown on the surface of nanoparticles. According to the ratio of core material to the shell, core/shell structured nanoparticles are separated into homogeneous and homogeneousnanoparticles. And the shell material may influence the luminescence performance. In few reports there have been made the comparisons of luminescence performance of Nd3+ between heterogeneous and homogeneous core/shell nanoparticles. In the present work, small-sized hexagonal NaGdF4:3%Nd3+ nanoparticles with an average size of sub-5~nm are synthesized by a coprecipitation method. To overcome the nanosize-induced surface defects and improve the luminous performance, the NaGdF4:3%Nd3+ nanoparticles are coated with homogeneous and heterogeneous shells, respectively. Core/shell structured nanoparticles with different values of shell thickness are synthesized by using the core/shell ratios of 1:2, 1:4 and 1:6. The luminescence properties of the prepared nanoparticles are characterized by photoluminescence spectra and fluorescence lifetimes. Under 808~nm excitation, the NaGdF4:3%Nd3+ nanoparticles exhibit nearinfrared emissions with sharp bands at ~866 nm, ~893 nm, ~1060 nm, which can be assigned to the transitions of 4F3/2 to 4I9/2, 4F2/3 to 4I11/2, respectively. The locations of emission peaks of the core/shell nanoparticles are in accordance with the those of cores while the fluorescence intensity increases significantly. In addition, the average lifetimes of Nd3+ ions at 866 nm of core/shell nanoparticles are longer than those of the cores, which indicates that the undoped shell can minimize the occurrence of unwanted surfac-related deactivations. Notably, comparing with the homogeneous NaGdF4:3%Nd3+@NaGdF4 nanoparticles, the fluorescence intensity of heterogeneous NaGdF4:3%Nd3+@NaYF4 nanoparticles is enhanced and their lifetimes become longer. It is due to the low stability of hexagonal NaYF4, which suppresses the nucleation of the shell precursor and makes the shell able to be fully coated on the core. The decrease of electron charge density on the surface of core/shell nanoparticles is also beneficial to shell growth and crystallization. The high crystallinity of heterogeneous core/shell structured nanoparticles can eliminate negative influence of surface effect more efficiently. In addition, the phonon energy of NaYF4 is lower than that of NaGdF4, which leads to low possibility of non-radiative cross-relaxation between Nd3+ ions, thereby improving the luminescence efficiency in the near in frared emission.
      Corresponding author: You Fang-Tian, ftyou@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274038) and the New Century Excellent Talents in University, China (Grant No. 12-0177).
    [1]

    Weissleder R 2001 Nat. Biotechnol. 19 316

    [2]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [3]

    Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941

    [4]

    Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744

    [5]

    Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205]

    [6]

    Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313

    [7]

    Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969

    [8]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710

    [9]

    Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347

    [10]

    Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172

    [11]

    Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 物理学报 63 147801]

    [12]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924

    [13]

    Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]

    [14]

    Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940

    [15]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [16]

    Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689

    [17]

    Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412

    [18]

    Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426

    [19]

    Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061

    [20]

    Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305

    [21]

    Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267

    [22]

    Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260

    [23]

    Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84

  • [1]

    Weissleder R 2001 Nat. Biotechnol. 19 316

    [2]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [3]

    Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941

    [4]

    Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744

    [5]

    Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205]

    [6]

    Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313

    [7]

    Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969

    [8]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710

    [9]

    Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347

    [10]

    Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172

    [11]

    Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 物理学报 63 147801]

    [12]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924

    [13]

    Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]

    [14]

    Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940

    [15]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [16]

    Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689

    [17]

    Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412

    [18]

    Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426

    [19]

    Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061

    [20]

    Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305

    [21]

    Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267

    [22]

    Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260

    [23]

    Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84

  • [1] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [2] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [3] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [4] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [5] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [7] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [8] Peng Fang, Zhang Qing-Li, y Wang Xiao-Fei, Zhang Hui-Li, Ding Shou-Jun, Liu Wen-Peng, Luo Jian-Qiao, Sun Dun-Lu, Sun Gui-Hua. Synthesis, structure and spectroscopic properties of Nd3+:SrY2O4 phosphor. Acta Physica Sinica, 2016, 65(1): 014211. doi: 10.7498/aps.65.014211
    [9] Li Zhi-Wen, He Xue-Min, Yan Shi-Ming, Song Xue-Yin, Qiao Wen, Zhang Xing, Zhong Wei, Du You-Wei. Synthesis, microstructure, and magnetic properties of -Fe2O3/NiO core/shell nanoflowers. Acta Physica Sinica, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [10] Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin. Performance of Yb-doped silicate glass with thermal bleaching. Acta Physica Sinica, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [11] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [12] Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui. Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties. Acta Physica Sinica, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [13] Liu Jun-Fang, Su Liang-Bi, Xu Jun. Preparation and near-infrared luminescence properties of Bi2O3-B2O3-BaO glasses. Acta Physica Sinica, 2013, 62(3): 037804. doi: 10.7498/aps.62.037804
    [14] Li Yong-Jin, Song Zhi-Guo, Li Chen, Wan Rong-Hua, Qiu Jian-Bei, Yang Zheng-Wen, Yin Zhao-Yi, Wang Xue, Wang Qi, Zhou Da-Cheng, Yang Yong. Effects of sefl-reduction of glass matrix on the broadband near infrared emissions from Bi-doped alkali earth aluminoborosilicate glasses. Acta Physica Sinica, 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [15] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [16] Liu Jun-Fang, Su Liang-Bi, Tang Hui-Li, Xu Jun. Preparation and near-infrared luminescence properties of Bi-doped BaO-B2O3glasses. Acta Physica Sinica, 2012, 61(12): 127806. doi: 10.7498/aps.61.127806
    [17] Zhou Da-Cheng, Liu Zhi-Liang, Song Zhi-Guo, Yang Zheng-Wen, He Xi-Jia, Wang Rong-Fei, Jiao Qing, Qiu Jian-Bei. Super broadband near infrared luminescence properties in Bi-doped aluminosilicate glasses. Acta Physica Sinica, 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [18] Zhou Peng, Su Liang-Bi, Li Hong-Jun, Yu Jun, Zheng Li-He, Yang Qiu-Hong, Xu Jun. Preparation and near-infrared luminescence properties of Bi-doped BaF2 crystal. Acta Physica Sinica, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [19] Xiong Tao, Gao Chuan-Bo, Chen Xiang-Lei, Zhou Xian-Yi, Weng Hui-Min, Cao Fang-Yu, Ye Bang-Jiao, Han Rong-Dian, Du Huai-Jiang. Positron study of carbon-Fe3O4 coaxial nanofibers. Acta Physica Sinica, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [20] О ТЕОРИИ ОБОЛОЧНЫХ СТРУКТУР ЯДЕР. Acta Physica Sinica, 1959, 15(8): 420-439. doi: 10.7498/aps.15.420
Metrics
  • Abstract views:  5776
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2017
  • Accepted Date:  13 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回