Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs

Lü Zhao-Cheng Li Ying Quan Gui-Ying Zheng Qing-Hua Zhou Wei-Wei Zhao Wang

Citation:

Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs

Lü Zhao-Cheng, Li Ying, Quan Gui-Ying, Zheng Qing-Hua, Zhou Wei-Wei, Zhao Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Generally, the Eu3+-activated red phosphors suffer narrow 4f-4f excitation lines ranging from near-UV to blue part of the spectrum, resulting in poor spectral overlapping with the emission spectrum of the pumping LED and low energy conversion efficiency. In this paper, the strategy of Te6+/Mo6+ mixing is adopted to enhance the excitation bandwidth of Eu3+ via the energy transfer from Mo6+-O2- charge transfer state to Eu3+, which is crucial for LED applications. A series of (Gd1-xEux)6(Te1-yMoy)O12 red phosphors are synthesized by the solid state method at 1200 ℃. The crystal structure, morphology and luminescent properties are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescent spectrum. The XRD patterns of (Gd1-xEux)6(Te1-yMoy) O12 (x = 0.2, y = 0, 0.4) match well with that of Gd6TeO12 (JCPDS No. 50-0269), but differ from that of Gd6MoO12 (JCPDS No. 24-1085). The phosphor consists of irregular particles with an average size of 10 m. Upon excitation at 393 nm, the (Gd1-xEux)6TeO12 phosphors emit red light corresponding to the intraconfigurational 4f-4f transitions of Eu3+, and the color coordinates are calculated to be (0.647, 0.353). The 5D07F2 electron-dipole transition dominates the emission spectrum, which reveals that Eu3+ occupies a crystallographic site without an inversion center. Moreover, this transition gives rise to three distinguishable emission lines situated at 605, 618, and 632 nm, respectively. This unusual spectral splitting is supposed to originate from the strong interaction exerted by the crystal field of host on the 4f electrons. The optimum doping content of Eu3+ in (Gd1-xEux)6TeO12 phosphor is 20% (mole fraction), the critical distance for energy transfer is 0.75 nm, and the concentration quenching is confirmed to be induced by the dipole-dipole interaction from the linear relationship between lg(I/x) and lg x (I represents the luminescence intensity, and x represents the doping concentration of Eu3+). As the temperature increases, the emission intensity decreases gradually due to thermal quenching. The integrated emission intensity at 423 K is 70% of the initial value at ambient temperature. The thermal activation energy is determined to be 0.1796 eV from the temperature dependence of luminescence intensities. The partial substitution of Te6+ by Mo6+ does not change the emission position nor intensity significantly, but promotes the excitation bandwidth and conversion efficiency remarkably. Compared with (Gd0.8Eu0.2)6TeO12, the compositionoptimized (Gd0.8Eu0.2)6(Te0.6Mo0.4)O12 presents a relatively flat excitation spectrum in the near-UV region. It also provides more intense emission since (Gd0.8Eu0.2)6MoO12 undergoes the strong concentration quenching arising from the high density of [MoO6] groups. In conclusion, the results indicate that (Gd0.8Eu0.2)6(Te0.6Mo0.4)O12 can serve as a broadband-excited red phosphor for near-UV-based white LEDs.
      Corresponding author: Zhao Wang, wzhao@hnnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205213, 21201071), the Natural Science Foundation of Anhui Province (Grant No. 1708085QE91), the Natural Science Foundation of Higher Education of Anhui Province (Grant No. KJ2016A673), the Youth Talent Support Program of Anhui Province (Grant Nos. gxyqZD2016259, gxyqZD2016260), the Innovative Team Building Project of Huainan (Grant No. 2016A24), and the Scientific Research Foundation of Huainan Normal University (Grant Nos. 2014xj57, 2014xj09zd, 2015xj11zd).
    [1]

    Pust P, Schmidit P J, Schnick W 2015 Nat. Mater. 14 454

    [2]

    Mckittick J, Shea-Rohwer L E 2014 J. Am. Ceram. Soc. 97 1327

    [3]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2010 Mater. Sci. Eng. R. 71 1

    [4]

    Smet P F, Parmentier A B, Poelman D 2011 J. Electrochem. Soc. 158 R37

    [5]

    Peng M Y, Yin X W, Tanner P A, Brik M G, Li P F 2015 Chem. Mater. 27 2938

    [6]

    McKittrich J, Hannah M E, Piquette A, Han J K, Choi J I, Anc M, Galvez M, Lu-gauer H, Talbot J B, Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3119

    [7]

    Liu W Q, Chao K F, Wu W J, Bao F Q, Zhou B Q 2016 Acta Phys. Sin. 65 207801 (in Chinese) [刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2016 物理学报 65 207801]

    [8]

    Xie R J, Hirosaki N 2007 Sci. Technol. Adv. Mat. 8 588

    [9]

    Qin L, Wei D, Huang Y L, Sun I K, Yu Y M 2013 J. Nanopart. Res. 5 1

    [10]

    Liu Y, Wang Y, Wang L, Yu S H 2014 RSC Adv. 4 4754

    [11]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [12]

    Dutta P S, Khanna A 2013 ECS J. Solid State Sci. Technol. 2 R3153

    [13]

    Li H Y, Yang H K, Moon B K, Jeong J H 2011 Inog. Chem. 50 12522

    [14]

    Li H Y, Yang H K, Moon B K, Choi B C, Jeong J H 2011 J. Mater. Chem. 21 4531

    [15]

    Hao M R, Li G F, He W W 2013 J. Chin. Ceram. Soc. 12 1730 (in Chinese) [郝敏如, 李桂芳, 贺文文 2013 硅酸盐学报 12 1730]

    [16]

    Sha R, Gao W, Liu Y P 2013 Chinese Journal of Luminescence 34 1469 (in Chinese) [莎仁, 高娃, 刘叶平 2013 发光学报 34 1469]

    [17]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [18]

    Dou X H, Zhao W R, Song E H, Fang X B, Deng L L 2011 Proceedings of 2011 China Functional Materials Technology and Industry Forum, Chongqing, November 16-19, 2011 463 (in Chinese) [豆喜华,赵韦人,宋恩海, 方夏冰, 邓玲玲 2011 中国功能材料科技与产业高层论坛, 重庆, 11月16-19日, 2011 463]

    [19]

    Blasse G 1986 J. Solid State Chem. 62 207

    [20]

    Zhang N M, Guo C F, Zheng J M, Su X Y, Zhao J 2014 J. Mater. Chem. C 2 3988

    [21]

    Chang Y C, Liang C H, Yan S A, Chang Y S 2010 J. Phys. Chen. C 114 3645

    [22]

    Baginskiy I, Liu R S 2009 J. Electrochem. Soc. 156 G29

    [23]

    Thangaraju D, Durirajan A, Balaji D, Babu S M, Hayakawa Y 2013 J. Lumin. 134 244

  • [1]

    Pust P, Schmidit P J, Schnick W 2015 Nat. Mater. 14 454

    [2]

    Mckittick J, Shea-Rohwer L E 2014 J. Am. Ceram. Soc. 97 1327

    [3]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2010 Mater. Sci. Eng. R. 71 1

    [4]

    Smet P F, Parmentier A B, Poelman D 2011 J. Electrochem. Soc. 158 R37

    [5]

    Peng M Y, Yin X W, Tanner P A, Brik M G, Li P F 2015 Chem. Mater. 27 2938

    [6]

    McKittrich J, Hannah M E, Piquette A, Han J K, Choi J I, Anc M, Galvez M, Lu-gauer H, Talbot J B, Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3119

    [7]

    Liu W Q, Chao K F, Wu W J, Bao F Q, Zhou B Q 2016 Acta Phys. Sin. 65 207801 (in Chinese) [刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2016 物理学报 65 207801]

    [8]

    Xie R J, Hirosaki N 2007 Sci. Technol. Adv. Mat. 8 588

    [9]

    Qin L, Wei D, Huang Y L, Sun I K, Yu Y M 2013 J. Nanopart. Res. 5 1

    [10]

    Liu Y, Wang Y, Wang L, Yu S H 2014 RSC Adv. 4 4754

    [11]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [12]

    Dutta P S, Khanna A 2013 ECS J. Solid State Sci. Technol. 2 R3153

    [13]

    Li H Y, Yang H K, Moon B K, Jeong J H 2011 Inog. Chem. 50 12522

    [14]

    Li H Y, Yang H K, Moon B K, Choi B C, Jeong J H 2011 J. Mater. Chem. 21 4531

    [15]

    Hao M R, Li G F, He W W 2013 J. Chin. Ceram. Soc. 12 1730 (in Chinese) [郝敏如, 李桂芳, 贺文文 2013 硅酸盐学报 12 1730]

    [16]

    Sha R, Gao W, Liu Y P 2013 Chinese Journal of Luminescence 34 1469 (in Chinese) [莎仁, 高娃, 刘叶平 2013 发光学报 34 1469]

    [17]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [18]

    Dou X H, Zhao W R, Song E H, Fang X B, Deng L L 2011 Proceedings of 2011 China Functional Materials Technology and Industry Forum, Chongqing, November 16-19, 2011 463 (in Chinese) [豆喜华,赵韦人,宋恩海, 方夏冰, 邓玲玲 2011 中国功能材料科技与产业高层论坛, 重庆, 11月16-19日, 2011 463]

    [19]

    Blasse G 1986 J. Solid State Chem. 62 207

    [20]

    Zhang N M, Guo C F, Zheng J M, Su X Y, Zhao J 2014 J. Mater. Chem. C 2 3988

    [21]

    Chang Y C, Liang C H, Yan S A, Chang Y S 2010 J. Phys. Chen. C 114 3645

    [22]

    Baginskiy I, Liu R S 2009 J. Electrochem. Soc. 156 G29

    [23]

    Thangaraju D, Durirajan A, Balaji D, Babu S M, Hayakawa Y 2013 J. Lumin. 134 244

  • [1] Luo Jie, Zhang Zi-Qiu, Xu Jun-Hao, Qin Zhao-Ting, Zhao Yuan-Shuai, He Hong, Li Guan-Nan, Tang Jian-Feng. Synthesis and luminescent properties of rare earths doped Gd2Te4O11 tellurite phosphors. Acta Physica Sinica, 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [2] Zhao Wang,  Ping Zhao-Yan,  Zheng Qing-Hua,  Zhou Wei-Wei. Concentration and thermal quenching of SrGdLiTeO6: Eu3+ red-emitting phosphor for white light-emitting diode. Acta Physica Sinica, 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [3] Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing. CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties. Acta Physica Sinica, 2016, 65(20): 207801. doi: 10.7498/aps.65.207801
    [4] Liu Hong-Li, Hao Yu-Ying, Xu Bing-She. Preparation and photoluminescence of LiSrBO3:Eu3+ red-emitting phosphors for white leds. Acta Physica Sinica, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [5] Mao Jin-Wei, Lü Shu-Chen, Qu Xiu-Rong, He Dong-Li, Meng Qing-Yu. Preparation and luminescent properties of Sr0.8-xBaxEu0.2WO4 red phosphors for white LED. Acta Physica Sinica, 2013, 62(3): 037803. doi: 10.7498/aps.62.037803
    [6] Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca3Si3O9:Dy3+ phosphors for white LED. Acta Physica Sinica, 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [7] Liang Feng, Hu Yi-Hua, Chen Li, Wang Xiao-Juan. Energy transfer between WO42- groups and Eu3+ in CaWO4:Eu3+ phosphor. Acta Physica Sinica, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [8] Xu Xin-Wei, Cui Bi-Feng, Zhu Yan-Xu, Guo Wei-Ling, Li Wei-Guo. Research of dielectric photonic crystal on red LED to increase luminous flux. Acta Physica Sinica, 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [9] Meng Qing-Yu, Zhang Qing, Li Ming, Liu Lin-Feng, Qu Xiu-Rong, Wan Wei-Long, Sun Jiang-Ting. Study of concentration dependence of luminescent properties for Eu3+ doped CaWO4 red phosphors. Acta Physica Sinica, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [10] Wang Qian, Ci Zhi-Peng, Wang Yu-Hua, Zhu Ge, Wen Yan, Liu Bi-Tao, Que Mei-Dan. Preparation and luminescence properties of a red phosphor Mg5SnB2O10:Eu3+, Bi3+ for light emitting diode. Acta Physica Sinica, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [11] Tang Hong-Xia, Lü Shu-Chen. Preparation and luminescent properties of SrMoO4:Eu3+phosphor for light emitting diode. Acta Physica Sinica, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [12] Li Pan-Lai, Wang Zhi-Jun, Yang Zhi-Ping, Guo Qing-Lin. Ba3Tb(BO3)3 ∶Ce3+ : a green emitting phosphor for white LED. Acta Physica Sinica, 2011, 60(4): 047804. doi: 10.7498/aps.60.047804
    [13] Feng Xiao-Hui, Meng Qing-Yu, Sun Jiang-Ting, Lü Shu-Chen, Sun Li-nan. Luminescent properties of Eu3+ doped Gd2W2O9 and Gd2(WO4)3 nanophosphors. Acta Physica Sinica, 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [14] Wang Bing, Li Zhi-Cong, Yao Ran, Liang Meng, Yan Fa-Wang, Wang Guo-Hong. Optimized growth of p-type AlGaN electron blocking layer in the GaN-based LED. Acta Physica Sinica, 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [15] Ding Xu, Xu Yan, Guo Chong-Feng. Luminescence characteristics of Sr2B5O9Cl: Eu2+ phosphors for white LED. Acta Physica Sinica, 2010, 59(9): 6632-6636. doi: 10.7498/aps.59.6632
    [16] Ma Ming-Xing, Zhu Da-Chuan, Tu Ming-Jing. Effect of H3BO3 on composition and luminescence properties of BaAl2Si2O8:Eu2+ blue phosphor. Acta Physica Sinica, 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
    [17] Jiang Yang, Luo Yi, Wang Lai, Li Hong-Tao, Xi Guang-Yi, Zhao Wei, Han Yan-Jun. Influence of pillar-and hole-patterned sapphire substrates on MOVPE grown GaN bulk and LED structures. Acta Physica Sinica, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [18] Yang Zhi-Ping, Liu Yu-Feng, Wang Li-Wei, Yu Quan-Mao, Xiong Zhi-Jun, Xu Xiao-Ling. Luminesce properties of the single white emitting phosphor Eu2+, Mn2+ co-doped Ca2SiO3Cl2. Acta Physica Sinica, 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [19] Zhao Xing, Fang Zhi_Liang, Mu Guo_Guang. Study on the colorimetric properties of the LED projection sources. Acta Physica Sinica, 2007, 56(5): 2537-2540. doi: 10.7498/aps.56.2537
    [20] Yang Dian-Lai, Hou Yan-Yan, Zhao Xin, Liu Gui-Shan, Lin Hai, Liu Ke, Edwin Yue-Bun Pun. Intense blue upconversion fluorescence of Tm3+/Yb3+-codoped bismuth tellurite glasses. Acta Physica Sinica, 2006, 55(8): 4304-4309. doi: 10.7498/aps.55.4304
Metrics
  • Abstract views:  5011
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2016
  • Accepted Date:  25 February 2017
  • Published Online:  05 June 2017

/

返回文章
返回