Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles investigation of the tuning in metal-MoS2 interface induced by doping

Tao Peng-Cheng Huang Yan Zhou Xiao-Hao Chen Xiao-Shuang Lu Wei

Citation:

First principles investigation of the tuning in metal-MoS2 interface induced by doping

Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional (2D) materials have shown great potential for electronic and optoelectronic applications. Among the 2D materials, molybdenum disulfide (MoS2) has received great attention in the transition metal dichalcogenides family. Unlike graphene, 2D MoS2 can exhibit semiconducting properties and its band gap is tunable with thickness. A demonstration of a single-layer MoS2 based field-effect transistor (FET) with a high on/off current ratio (about 108) has aroused the considerable interest. Although 2D MoS2 exhibits fascinating intrinsic properties for electronics, the contact may limit the device performance severely. In a real device such as FET, semiconducting 2D MoS2 needs contact with a metal electrode, and a Schottky barrier is always formed at the semiconductor-metal interface. The formation of low-resistance contact is a challenge, which is important for achieving high on current, large photoresponse and high-frequency operation. Therefore, understanding and tuning the interfaces formed between metals and 2D MoS2 is critical to controlling the contact resistance. In this work, some efforts have been made to investigate the 2D MoS2-metal interface in order to reduce the Schottky barrier height. By using the first-principles calculations based on density function theory, we investigate the effects of halogen doping-on metal-MoS2 interface, including the formation energy of defect, electronic structure, charge difference, and population. All calculations are performed using the ultrasoft pseudopotential plane wave method implemented in the CASTEP code. We use the generalized gradient approximation for the exchange and correlation potential as proposed by Perdew-Burke-Ernzerhof. Firstly, we calculate the formation energy to find the thermodynamically stable positions for the halogen elements located in 2D MoS2. It is shown that the halogen elements tend to occupy the S site of a MoS2 monolayer. Meanwhile, for the MoS2 monolayer, the halogen doping may introduce the defect level into the forbidden gap and make the Fermi level shift. For the metal-MoS2 interface, halogen doping can modulate its Schottky barrier height effectively in terms of Schottky-Mott model. This is because the Schottky barrier height at the metal-semiconductor interface depends on the difference between the Fermi level and the band edge position of the semiconductor. At the metal-MoS2 interface, the Fermi level is partially pinned as a result of the interface dipole formation and the production of the gap states. Therefore, using different metals with different work functions cannot modify the Schottky barrier height effectively. Here we demonstrate that F and Cl doping can reduce the Schottky barrier height, while Br and I doping can increase it. According to the results of the differential charge density analysis, we can ascribe the tuning of Schottky barrier height to the influence of the dipole caused by the charge transfer among the interfaces. This study can explain the relevant experimental results very well and provide a potential route to achieving low-resistance contact in the future applications of 2D materials.
      Corresponding author: Zhou Xiao-Hao, xhzhou@mail.sitp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11334008, 61290301).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114

    [4]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [5]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [6]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983

    [7]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372

    [9]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [13]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563

    [14]

    Popov I, Seifert G, Tomnek D 2012 Phys. Rev. Lett. 108 156802

    [15]

    Zhang L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 187101 (in Chinese) [张理勇, 方粮, 彭向阳 2015 物理学报 64 187101]

    [16]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [17]

    Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Proceedings of the IEEE International Electron Devices Meeting Washington, DC, USA, December 9-11, 2013 p499

    [18]

    Gan L Y, Zhao Y J, Huang D, Schwingenschlgl U 2013 Phys. Rev. B. 87 245307

    [19]

    Liu D, Guo Y, Fang L, Robertson J 2013 Appl. Phys. Lett. 103 183113

    [20]

    McDonnell S, Addou R, Buie C, Wallace R M, Hinkle C L 2014 ACS Nano. 8 2880

    [21]

    Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [24]

    Cheng Y C, Zhu Z Y, Schwingenschlgl U 2011 Phys. Rev. B 84 153402

    [25]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J, Kelly P J 2009 Phys. Rev. B 79 195425

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114

    [4]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [5]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [6]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983

    [7]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372

    [9]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [13]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563

    [14]

    Popov I, Seifert G, Tomnek D 2012 Phys. Rev. Lett. 108 156802

    [15]

    Zhang L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 187101 (in Chinese) [张理勇, 方粮, 彭向阳 2015 物理学报 64 187101]

    [16]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [17]

    Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Proceedings of the IEEE International Electron Devices Meeting Washington, DC, USA, December 9-11, 2013 p499

    [18]

    Gan L Y, Zhao Y J, Huang D, Schwingenschlgl U 2013 Phys. Rev. B. 87 245307

    [19]

    Liu D, Guo Y, Fang L, Robertson J 2013 Appl. Phys. Lett. 103 183113

    [20]

    McDonnell S, Addou R, Buie C, Wallace R M, Hinkle C L 2014 ACS Nano. 8 2880

    [21]

    Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [24]

    Cheng Y C, Zhu Z Y, Schwingenschlgl U 2011 Phys. Rev. B 84 153402

    [25]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J, Kelly P J 2009 Phys. Rev. B 79 195425

  • [1] Wang Xue-Bing, Tang Chun-Mei, Xie Zi-Han, Yu Rui, Yan Jie, Jiang Cheng-Le. Theoretical research of toxic gases adsorbed by Mo-doped two-dimensional VS2 structure. Acta Physica Sinica, 2024, 73(1): 013101. doi: 10.7498/aps.73.20231236
    [2] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [3] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [5] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [8] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [9] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [10] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [12] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [14] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [15] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [18] Zhang Jian-Dong, Yang Chun, Chen Yuan-Tao, Zhang Bian-Xia, Shao Wen-Ying. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [19] Fang Shao-Hua, Cheng Xiu-Lan, Huang Ye, Gu Huai-Huai. Investigating the effect of doping amorphous silicon nitride on retention characteristics of SONOS device by DFT calculation. Acta Physica Sinica, 2007, 56(11): 6634-6641. doi: 10.7498/aps.56.6634
    [20] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
Metrics
  • Abstract views:  5533
  • PDF Downloads:  646
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2016
  • Accepted Date:  01 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回