Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion)

Qian Xin-Yu Sun Yan Liu Dong-Dong Hu Feng Fan Qiu-Bo Gou Bing-Cong

Citation:

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion)

Qian Xin-Yu, Sun Yan, Liu Dong-Dong, Hu Feng, Fan Qiu-Bo, Gou Bing-Cong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Energy levels of the core-excited high-spin Rydberg states (4,5,6L, L = S, P) in boron atom (ion) are calculated by the Rayleigh-Ritz variation method with using large-scale multi-configuration wave functions. The important orbital-spin angular momentum partial waves are selected based on the rule of configuration interaction. The computational convergence is discussed by the example of the contribution from each partial wave in the non-relativistic energy calculations of the high-spin state 1s2s2p2 5Pe in B+ ion. To saturate the wave functional space and improve the non-relativistic energy, the restricted variational method is used to calculate the restricted variational energy. Furthermore, the mass polarization effect and relativistic energy correction are included by using a first-order perturbation theory. The quantum electrodynamic effects and higher-order relativistic contributions to the energy levels are also calculated by the screened hydrogenic formula. Then, the accurate relativistic energy levels of these high-spin states of B atom (ion) are obtained by adding the non-relativistic energy and all corrections. The fine structure splitting of these high-spin states is also calculated by the Breit-Pauli operators in the first-order perturbation theory. Compared with other theoretical results, our calculation results are in good accordance with the experimental data. The absorption oscillator strengths, emission oscillator strengths, absorption rates, emission rates, and transition wavelengths of the electric-dipole transitions between these high-spin states of B atom (ions) are systematically calculated by using the optimized wave functions. The oscillator strengths and transition rates are obtained in both the length and velocity gauges. By comparing the two gauge results of oscillator strength, we find that there is a good consistency between them when fl 0.3, and a reasonable consistency is obtained when fl 0.3. The accordance between the length and the velocity gauge results reflects that the calculated wave functions in this work are reasonably accurate. The calculated transition data are also compared with the corresponding experimental and other theoretical data. Good agreement is obtained except the wavelengths for two transitions: 1s2p4p 4Se1s2p3d 4P and 1s2p4d 4P1s2p3p 4Pe. The relative differences between our theoretical results and experimental data are 0.7% and 0.3%, respectively. They need to be verified by further theoretical and experimental studies. For some core-excited high-spin states, the related energy levels and transition data are reported for the first time. Our calculation results will provide valuable data for calculating the spectral lines in the relevant experiments.
      Corresponding author: Sun Yan, suenyangu@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604284) and the National Natural Science Foundation of China (Grant No. 11474020).
    [1]

    Johansson S G, Litzn U, Kasten J, Kock M 1993 Astrophys. J. 403 L25

    [2]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H, Bastin T, Dsesquelles J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2797

    [3]

    Gu M F, Beiersdorfer P, Lepson J K 2011 Astrophys. J. 732 91

    [4]

    Martinson I, Bickel W S, Olrne A 1970 J. Opt. Soc. Am. 60 1213

    [5]

    Agentoft M, Andersen T, Chung K T 1984 J. Phys. B: At. Mol. Opt. Phys. 17 L433

    [6]

    Agentoft M, Andersen T, Chung K T, Davis B F 1985 Phys. Scr. 31 74

    [7]

    Chung K T, Bruch R, Trbert E, Heckmann P H 1984 Phys. Scr. 29 108

    [8]

    Baudinet-Robinet Y, Garnir H P, Dumont P D 1986 Phys. Rev. A 34 4722

    [9]

    Baudinet-Robinet Y, Dumont P D, Garnir H P, Trbert E, Heckmann P 1987 Z. Phys. D: Atoms, Molecules and Clusters 7 47

    [10]

    Mannervik S, Cederquist H, Martinson I 1986 Phys. Rev. A 34 231

    [11]

    Mannervik S, Cederquist H, Martinson I, Brage T, Fischer C F 1987 Phys. Rev. A 35 3136

    [12]

    Jannitti E, Nicolosi P, Tondello G 1984 Physica C 124 139

    [13]

    Lynam W G, Carroll P K, Costello J T, Evans D, O'Sullivant G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3963

    [14]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, lme A, Martinson I 2005 Phys. Scr. 71 489

    [15]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [16]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301

    [17]

    Fuhr J R, Wiese W L 2010 J. Phys. Chem. Ref. Data 39 013101

    [18]

    Mller A, Schippers S, Phaneuf R A, Scully S W J, Aguilar A, Cisneros C, Gharaibeh M F, Schlachter A S, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135201

    [19]

    Beck D R, Nicolaides C A 1977 Phys. Lett. A 61 227

    [20]

    Gou B C, Deng W S 2000 Phys. Rev. A 62 032705

    [21]

    Yang H Y, Chung K T 1995 Phys. Rev. A 51 3621

    [22]

    Gou B C, Wang F 2004 Phys. Rev. A 69 042513

    [23]

    Qu L H, Wang Z W, Li B W 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2469

    [24]

    Qu L H, Wang Z W, Li B W 1998 Chin. Phys. Lett. 15 329

    [25]

    Sun Y, Liu D D, Mei M F, Zhang C M, Han C, Hu F, Gou B C 2015 J. Quant. Spectrosc. Radiat. Transfer 167 145

    [26]

    Brooks R L, Hardis J E, Berry H G, Curtis L J, Cheng K T, Ray W 1980 Phys. Rev. Lett. 45 1318

    [27]

    Larsson S, Crossley R 1982 Int. J. Quantum Chem. 22 837

    [28]

    Ritz W, Reine J 1908 Agnew. Math. 35 1

    [29]

    Chung K T 1979 Phys. Rev. A 20 1743

    [30]

    Davis B F, Chung K T 1984 Phys. Rev. A 29 1878

    [31]

    Drake G W F 1982 Adv. Mol. Phys. 18 399

    [32]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Dsequelles J, Savukov I 2003 Phys. Rev. A 67 062507

    [33]

    Sun Y, Gou B C, Zhu J J 2010 Acta Phys. Sin. 59 3878 (in Chinese) [孙言, 苟秉聪, 朱婧晶 2010 物理学报 59 3878]

    [34]

    Chung K T, Bruch R 1983 Phys. Rev. A 28 1418

  • [1]

    Johansson S G, Litzn U, Kasten J, Kock M 1993 Astrophys. J. 403 L25

    [2]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H, Bastin T, Dsesquelles J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2797

    [3]

    Gu M F, Beiersdorfer P, Lepson J K 2011 Astrophys. J. 732 91

    [4]

    Martinson I, Bickel W S, Olrne A 1970 J. Opt. Soc. Am. 60 1213

    [5]

    Agentoft M, Andersen T, Chung K T 1984 J. Phys. B: At. Mol. Opt. Phys. 17 L433

    [6]

    Agentoft M, Andersen T, Chung K T, Davis B F 1985 Phys. Scr. 31 74

    [7]

    Chung K T, Bruch R, Trbert E, Heckmann P H 1984 Phys. Scr. 29 108

    [8]

    Baudinet-Robinet Y, Garnir H P, Dumont P D 1986 Phys. Rev. A 34 4722

    [9]

    Baudinet-Robinet Y, Dumont P D, Garnir H P, Trbert E, Heckmann P 1987 Z. Phys. D: Atoms, Molecules and Clusters 7 47

    [10]

    Mannervik S, Cederquist H, Martinson I 1986 Phys. Rev. A 34 231

    [11]

    Mannervik S, Cederquist H, Martinson I, Brage T, Fischer C F 1987 Phys. Rev. A 35 3136

    [12]

    Jannitti E, Nicolosi P, Tondello G 1984 Physica C 124 139

    [13]

    Lynam W G, Carroll P K, Costello J T, Evans D, O'Sullivant G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3963

    [14]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, lme A, Martinson I 2005 Phys. Scr. 71 489

    [15]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [16]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301

    [17]

    Fuhr J R, Wiese W L 2010 J. Phys. Chem. Ref. Data 39 013101

    [18]

    Mller A, Schippers S, Phaneuf R A, Scully S W J, Aguilar A, Cisneros C, Gharaibeh M F, Schlachter A S, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135201

    [19]

    Beck D R, Nicolaides C A 1977 Phys. Lett. A 61 227

    [20]

    Gou B C, Deng W S 2000 Phys. Rev. A 62 032705

    [21]

    Yang H Y, Chung K T 1995 Phys. Rev. A 51 3621

    [22]

    Gou B C, Wang F 2004 Phys. Rev. A 69 042513

    [23]

    Qu L H, Wang Z W, Li B W 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2469

    [24]

    Qu L H, Wang Z W, Li B W 1998 Chin. Phys. Lett. 15 329

    [25]

    Sun Y, Liu D D, Mei M F, Zhang C M, Han C, Hu F, Gou B C 2015 J. Quant. Spectrosc. Radiat. Transfer 167 145

    [26]

    Brooks R L, Hardis J E, Berry H G, Curtis L J, Cheng K T, Ray W 1980 Phys. Rev. Lett. 45 1318

    [27]

    Larsson S, Crossley R 1982 Int. J. Quantum Chem. 22 837

    [28]

    Ritz W, Reine J 1908 Agnew. Math. 35 1

    [29]

    Chung K T 1979 Phys. Rev. A 20 1743

    [30]

    Davis B F, Chung K T 1984 Phys. Rev. A 29 1878

    [31]

    Drake G W F 1982 Adv. Mol. Phys. 18 399

    [32]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Dsequelles J, Savukov I 2003 Phys. Rev. A 67 062507

    [33]

    Sun Y, Gou B C, Zhu J J 2010 Acta Phys. Sin. 59 3878 (in Chinese) [孙言, 苟秉聪, 朱婧晶 2010 物理学报 59 3878]

    [34]

    Chung K T, Bruch R 1983 Phys. Rev. A 28 1418

  • [1] Mu Zhi-Dong. Theoretical study of energy levels and transitions 4s24p3−4s4p4 for ions Rh XIII to Cd XVI. Acta Physica Sinica, 2019, 68(6): 063101. doi: 10.7498/aps.68.20181976
    [2] Sun Yan, Hu Feng, Sang Cui-Cui, Mei Mao-Fei, Liu Dong-Dong, Gou Bing-Cong. Radiative and Auger transitions of K-shell excited resonance states in boron-like sulfur ion. Acta Physica Sinica, 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [3] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [4] Tan Xiao-Ming, Zhao Gang, Zhang Di. Effects of fine structure of absorption spectrum and spin-singlet on zero-field-splitting parameters for BaCrSi4O10 and AgGaSe2:Cr2+. Acta Physica Sinica, 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [5] Wang Rui-Rong, Wang Wei, Fang Zhi-Heng, An Hong-Hai, Jia Guo, Xie Zhi-Yong, Meng Xiang-Fu. Experimental studies on the opacity of dense aluminum compressed by a laser-driven shock waves. Acta Physica Sinica, 2013, 62(12): 125202. doi: 10.7498/aps.62.125202
    [6] Chen Sun, Zhu Yun-Xia, Ge Zi-Ming, He Li-Ming. MBPT calculation for the fine-structure intervals of principal series np(n=39) for Na. Acta Physica Sinica, 2012, 61(15): 153104. doi: 10.7498/aps.61.153104
    [7] Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong. The effect of relativity on the structures and transition properties of Li-like ions. Acta Physica Sinica, 2012, 61(9): 093106. doi: 10.7498/aps.61.093106
    [8] Cai Shao-Hong, Zhou Ye-Hong. The excited states structure for chloroethylene under the external electric field. Acta Physica Sinica, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [9] Sun Yan, Gou Bing-Cong, Zhu Jing-Jing. Energies, fine structures, and Auger widths of the high-lying triply excited states of 2S(m) and 2D(m) (m=2—7) for the “hollow atom” lithium. Acta Physica Sinica, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [10] Ma Yi-Pei, He Li-Ming, Zhang Meng, Zhu Yun-Xia. Calculation of fine-structure intervals of nd series high Rydberg states of Na. Acta Physica Sinica, 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [11] He Yong-Lin, Zhou Xiao-Xin, Li Xiao-Yong. Study of Rydberg states of lithium in a static electric field using B-spline functions. Acta Physica Sinica, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [12] Ouyang Yong-Zhong, Yi You-Gen, Zhu Zheng-He, Zheng Zhi-Jian. Magnetic quadrupole M2 2s2 1S0—2s2p3P2(Z=10—103) trangsions for Be-like ions. Acta Physica Sinica, 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [13] Lü Hai-Ping, Yin Chun-Hao, Wei Xue-Song, Niu Ying-Xi, Song Ning, Ru Rui-Peng. The spectral fine structure, zero-field splitting parameters and Jahn-Teller effect of LiNbO3∶Fe3+crystals. Acta Physica Sinica, 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [14] Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng, Yang Liu. Spectral hyper-fine structure and zero-field splitting parameters with Jahn-Teller effect of CsNiCl3 crystal. Acta Physica Sinica, 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [15] Mu Zhi-Dong, Wei Qi-Ying. Calculation of wavelengths and oscillator strengths of transition 3d104s—3d94s4p for ions from MoⅩⅣ—RuⅩⅥ. Acta Physica Sinica, 2004, 53(6): 1742-1748. doi: 10.7498/aps.53.1742
    [16] Ge Zi-Ming, Lv Zhi-Wei, Wang Zhi-Wen, Zhou Ya-Jun. Theoretical calculation of the fine-structure and term energy of the excited states 1s~2 nd(n=3,4,5 of lithium-like systems. Acta Physica Sinica, 2002, 51(12): 2733-2739. doi: 10.7498/aps.51.2733
    [17] WANG FEI, GOU BING-CONG, HAN LI-HONG. RADIATIVE TRANSITION OF CORE-EXCITED 2smd4De STATES TO THE 2pnd4Do STATES IN LITHIUM. Acta Physica Sinica, 2001, 50(9): 1685-1688. doi: 10.7498/aps.50.1685
    [18] HAN LI-HONG, GOU BING-CONG, WANG FEI. RELATIVISTIC ENERGIES AND FINE STRUCTURES OF THE EXCITED STATES FOR BERYLLIUM-LIKE BⅡ. Acta Physica Sinica, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [19] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [20] HAN LI-HONG, GOU BING-CONG, WANG FEI. RADIATIVE TRANSITION OF TRIPLY EXCITED 2p2np4So STATES TO THE ls2pmp4P STATES IN LITHIUM-LIKE IONS. Acta Physica Sinica, 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
Metrics
  • Abstract views:  4727
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2016
  • Accepted Date:  18 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回