Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier

Jiang Xiu-Juan Tang Yi-Fan Wang Li Li Jing-Hui Wang Bo Xiang Ying

Citation:

Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier

Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A key issue in developing a high-power laser driver, which can be used for inertial confinement fusion and laser produced plasma experiments, is to obtain uniform irradiation on the target surface, thus a number of spatial or temporal techniques have been proposed for laser beam smoothing. A scheme combining a lens array with the technique of smoothing by spectral dispersion (SSD) is being explored in the SG-II Laser Facility located in Shanghai Institute of Optics and Fine Mechanics. As the laser system involves a variety of optical elements, their influences have to be considered in the implementation of such a scheme. The Nd:glass amplifier is one of the most important parts of the system, and the phase-modulated laser beam will propagate through it along the long light path when SSD is employed. In this paper, the performance of uniform irradiation of the target pattern is studied based on two-dimensional simulations when the gain characteristic of the amplifier is taken into account. The major factors, such as the small signal gain profile of the amplifier, the amplification factor, the bandwidth of the phase-modulated laser beam and the difference between the central wavelength of the laser and the central wavelength of the amplifier gain curve, are analyzed in detail. The numerical results show that when the central wavelength of the incident beam is different from the central wavelength of the amplifier gain curve, intensity distribution of the target pattern will be affected to a degree depending on the amplification factor; while these two wavelengths are very close to or identical with each other, variation in the intensity distribution is trivial. The symmetry of the phase-modulated laser spectrum will be destroyed due to the gain characteristic of the amplifier, especially when the bandwidth is relatively wide. However, the slight asymmetry does not result in significant influence on the spatial power spectrum nor uniformity of the target pattern, even in the case where the central wavelength of the incident beam is different from that of the amplifier gain curve. The reasons would be 1) the gain curve of the amplifier is actually quite flat within the laser bandwidth, and 2) with the technique of SSD, all spectral components contribute to the target intensity distribution within an average time. The analysis indicates that the performance of uniform irradiation of the target pattern depends mainly on the bandwidth of the phase-modulated laser beam. A wider bandwidth can always generate better irradiation when it is within a certain range, say no more than 0.3 nm, but beyond this range, the nonuniformity tends to remain at a level about 0.250.3. Multistage Nd:glass amplifiers will be employed in the practical laser driver, and the case investigated in this paper involves only one stage for simplicity. The conclusion obtained in this paper is important for implementing the technique of SSD in the laser system.
      Corresponding author: Jiang Xiu-Juan, jiangxj@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204043, 11374067) and the Open Fund of Key Laboratory for High Power Laser Physics of Chinese Academy of Sciences (Grant No. SG-001103).
    [1]

    Kilkenny J D, Glendinning S G, Haan S W 1994 Phys. Plasmas 1 1379

    [2]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [3]

    Shu H, Fu S Z, Huang X G, Ma M X, Wu J, Ye J J, He J H, Gu Y 2007 Eur. Phys. J. D 44 367

    [4]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [5]

    Regan S P, Marozas J A, Kelly J H, Bothly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Li P, Su J Q, Ma C, Zhang R, Jing F 2009 Acta Phys. Sin. 58 6210 (in Chinese) [李平, 粟敬钦, 马驰, 张锐, 景峰 2009 物理学报 58 6210]

    [7]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [8]

    Zhou S L, Zhu J, Li X C, Lin Z Q, Dai Y P 2006 Chin. J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [9]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 物理学报 55 5824]

    [10]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, Lin Z Q 2010 Acta Optica Sin. 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [11]

    Zhang R, Wang J J, Su J Q, Liu L Q, Deng Q H 2010 Acta Phys. Sin. 59 1088 (in Chinese) [张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华 2010 物理学报 59 1088]

    [12]

    Rotter M D, Mccracken R W, Erlandson A C, Guenet M 1997 Proc. SPIE 3047 178

    [13]

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801 (in Chinese) [黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 物理学报 64 087801]

    [14]

    Kauffman R 1998 Inertial Confinement Fusion Annual Report UCRL-LR-105821-97

    [15]

    Jiang S E, Ding Y K, Miao W Y, Liu S Y, Zheng Z F, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. China Ser. G 39 1571 (in Chinese) [江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学 G辑 39 1571]

    [16]

    Wang X D, Zhang S K, Guo L F, Tang J, Wen G Q, Huang X J, Peng H S 1998 High Power Laser and Particle Beams 3 340 (in Chinese) [王晓东, 张树葵, 郭良福, 唐军, 文国庆, 黄小军, 彭翰生 1998 强激光与粒子束 3 340]

    [17]

    Wang J F, Zhu H D, Li X C, Zhu J Q 2008 Chin. J. Lasers 35 187 (in Chinese) [王江峰, 朱海东, 李学春, 朱健强 2008 中国激光 35 187]

    [18]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [19]

    Siegman A E 1986 Lasers (California: University Science Books) pp630-731

    [20]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuege J D 2005 J. Opt. Soc. Am. B 22 998

    [21]

    Jiang X J, Li J H 2012 Optik 123 1411

  • [1]

    Kilkenny J D, Glendinning S G, Haan S W 1994 Phys. Plasmas 1 1379

    [2]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [3]

    Shu H, Fu S Z, Huang X G, Ma M X, Wu J, Ye J J, He J H, Gu Y 2007 Eur. Phys. J. D 44 367

    [4]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [5]

    Regan S P, Marozas J A, Kelly J H, Bothly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Li P, Su J Q, Ma C, Zhang R, Jing F 2009 Acta Phys. Sin. 58 6210 (in Chinese) [李平, 粟敬钦, 马驰, 张锐, 景峰 2009 物理学报 58 6210]

    [7]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [8]

    Zhou S L, Zhu J, Li X C, Lin Z Q, Dai Y P 2006 Chin. J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [9]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 物理学报 55 5824]

    [10]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, Lin Z Q 2010 Acta Optica Sin. 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [11]

    Zhang R, Wang J J, Su J Q, Liu L Q, Deng Q H 2010 Acta Phys. Sin. 59 1088 (in Chinese) [张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华 2010 物理学报 59 1088]

    [12]

    Rotter M D, Mccracken R W, Erlandson A C, Guenet M 1997 Proc. SPIE 3047 178

    [13]

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801 (in Chinese) [黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 物理学报 64 087801]

    [14]

    Kauffman R 1998 Inertial Confinement Fusion Annual Report UCRL-LR-105821-97

    [15]

    Jiang S E, Ding Y K, Miao W Y, Liu S Y, Zheng Z F, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. China Ser. G 39 1571 (in Chinese) [江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学 G辑 39 1571]

    [16]

    Wang X D, Zhang S K, Guo L F, Tang J, Wen G Q, Huang X J, Peng H S 1998 High Power Laser and Particle Beams 3 340 (in Chinese) [王晓东, 张树葵, 郭良福, 唐军, 文国庆, 黄小军, 彭翰生 1998 强激光与粒子束 3 340]

    [17]

    Wang J F, Zhu H D, Li X C, Zhu J Q 2008 Chin. J. Lasers 35 187 (in Chinese) [王江峰, 朱海东, 李学春, 朱健强 2008 中国激光 35 187]

    [18]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [19]

    Siegman A E 1986 Lasers (California: University Science Books) pp630-731

    [20]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuege J D 2005 J. Opt. Soc. Am. B 22 998

    [21]

    Jiang X J, Li J H 2012 Optik 123 1411

  • [1] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [2] Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect. Acta Physica Sinica, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [3] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [4] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [5] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [6] Huang Wen-Fa, Li Xue-Chun, Wang Jiang-Feng, Lu Xing-Hua, Zhang Yu-Qi, Fan Wei, Lin Zun-Qi. Theoretical and experimental investigations on wavefront distortion and thermal-stress induced birefringence in a laser diode pumped helium gas-cooled multislab Nd:glass laser amplifier. Acta Physica Sinica, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [7] Liu Lan-Qin, Zhang Ying, Geng Yuan-Chao, Wang Wen-Yi, Zhu Qi-Hua, Jing Feng, Wei Xiao-Feng, Huang Wan-Qing. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system. Acta Physica Sinica, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [8] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [9] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] Jiang Xiu-Juan, Li Jing-Hui, Li Hua-Gang, Zhou Shen-Lei, Li Yang, Lin Zun-Qi. Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion. Acta Physica Sinica, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [11] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [12] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [13] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Deng Qing-Hua. Experimental study on smoothing by spectral dispersion using linear frequency-modulated pulse. Acta Physica Sinica, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [14] Li Ping, Su Jing-Qin, Ma Chi, Zhang Rui, Jing Feng. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot. Acta Physica Sinica, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [15] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [18] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [19] Song Qi, Song Chang-Lie, Li Cheng-Ren, Li Shu-Feng, Li Jian-Yong. Numerical simulation of erbium non-uniformly doped waveguide amplifier in the pr opagation direction. Acta Physica Sinica, 2005, 54(4): 1624-1629. doi: 10.7498/aps.54.1624
    [20] ZHANG HUA, FAN DIAN-YUAN. THE DYNAMIC MODULATION FOR GAIN PERFORMANCE IN MULTI-SEGMENT Nd:GLASS DISK LASER AMPLIFIERS. Acta Physica Sinica, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
Metrics
  • Abstract views:  4719
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2017
  • Accepted Date:  19 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回