Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer

Wang Ri-Xing Ye Hua Wang Li-Juan Ao Zhang-Hong

Citation:

Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer

Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spin-transfer effects induced by spin-polarized current in the spin valve structures present a platform for studying different static and dynamic magnetization states sustained or driven by current. Especially, it can excite some new magnetic states and cause magnetization reversal and precession, which offers some promising applications in data processing and microwave emission. However, most of researches so far have focused on the spin valve structure with parallel or perpendicular anisotropy. Compared with the spin valve structure with parallel or perpendicular anisotropy device, the spin valve structure with a tilted polarizer is also hopeful for its potential application in fast-switching and high-density magnetic recording. Moreover, the tilted polarizer provides a new way to control the spin torquedriven magnetization dynamics in spin valve structure. In this paper, the magnetization reversal and precession driven by the spin-transfer torque in spin valve structures with a perpendicular free layer and a tilted polarizer layer are investigated theoretically. By linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque, two coupled dynamically evolutive equations and new equilibrium directions are obtained. Performing stability analysis for all new equilibrium directions and taking [Co/Ni]4 multilayers as an illustrative example, we obtain the phase diagrams of magnetic states defined in parameter space spanned by external magnetic field and current density. Several magnetic states, including quasi-parallel stable states, quasi-antiparallel stable states, out-of-plane precession, and bistable states are distinguished in the phase diagrams. Through adjusting the magnitudes of current density and external magnetic field, the switching from stable states to precessional ones and the reversal between two stable states can be realized, and the reversal current increases with the external magnetic field increasing. Meanwhile, we portray the phase diagram of magnetic states defined in parameter space spanned by current density and the direction of tilted polarizer. In this case, the out-of-plane precession does not emerge as the current density and external magnetic field are relatively small. Affected by the directions of spin polarizer, the reversal current of magnetization is lowest when the direction of spin polarizer is parallel to the easy axis of free-layer, and is largest when the direction of spin polarizer is perpendicular to the easy axis of free-layer. Selecting the different directions of the polarized-layer magnetization provides an alternative way to improve the efficiency of current-driven microwave emitting and magnetization reversal. By solving temporal evolution equations numerically, the behaviors of different magnetic states are shown and the validities of the phase diagrams are confirmed.
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347132), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3096), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 14C0807).
    [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Katinea J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [9]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [10]

    Albrecht M, Hu G, Guhr I L, Ulbrich T C, Boneberg J 2005 Nat. Mater. 4 203

    [11]

    Wang J P 2005 Nat. Mater. 4 191

    [12]

    Zhang H, Lin W W, Mangin S 2013 Appl. Phys. Lett. 102 012411

    [13]

    Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S, Wang Y G 2010 J. Magn. Magn. Mater. 322 2264

    [14]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [15]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905

    [16]

    Zhou Y, Zhang H, Liu Y W 2012 J. Appl. Phys. 112 063903

    [17]

    Zhou Y, Bonetti S, Zha C L, kerman J 2009 New J. Phys. 11 103028

    [18]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [19]

    Bazaliy Y B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421

    [20]

    Grollier J, Cros V, Jaffrs H, Hamzic A, George J M, Faini G, Ben Y J, Gall H L, Fert A 2003 Phys. Rev. B 67 174402

    [21]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [22]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [23]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [24]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Katinea J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [9]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [10]

    Albrecht M, Hu G, Guhr I L, Ulbrich T C, Boneberg J 2005 Nat. Mater. 4 203

    [11]

    Wang J P 2005 Nat. Mater. 4 191

    [12]

    Zhang H, Lin W W, Mangin S 2013 Appl. Phys. Lett. 102 012411

    [13]

    Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S, Wang Y G 2010 J. Magn. Magn. Mater. 322 2264

    [14]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [15]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905

    [16]

    Zhou Y, Zhang H, Liu Y W 2012 J. Appl. Phys. 112 063903

    [17]

    Zhou Y, Bonetti S, Zha C L, kerman J 2009 New J. Phys. 11 103028

    [18]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [19]

    Bazaliy Y B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421

    [20]

    Grollier J, Cros V, Jaffrs H, Hamzic A, George J M, Faini G, Ben Y J, Gall H L, Fert A 2003 Phys. Rev. B 67 174402

    [21]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [22]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [23]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [24]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] Li Zai-Dong, Nan Xue-Meng, Qu Chuan, Liu Wu-Ming. Inertial magnetization dynamics on femtosecond scale. Acta Physica Sinica, 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [3] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [5] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [6] Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei. Analysis of stability catastrophe of confocal cavity. Acta Physica Sinica, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [7] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [8] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [9] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [10] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [11] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [12] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [13] Sun Di-Hua, Kang Yi-Rong, Li Hua-Min. Analysis of evolution mechanism of traffic energy dissipation by considering driver’s forecast effect. Acta Physica Sinica, 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [14] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [15] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [16] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [17] Sun Ning, Zhang Hua-Guang, Wang Zhi-Liang. Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems. Acta Physica Sinica, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [18] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] Wang Tao, Gao Zi-You, Zhao Xiao-Mei. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [20] YI LIN, YAO KAI-LUN. THREE-DIMENSIONAL QUANTUM SPIN GLASS THEORY (Ⅱ)——STABILITY ANALYSIS. Acta Physica Sinica, 1993, 42(6): 992-998. doi: 10.7498/aps.42.992
Metrics
  • Abstract views:  4860
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2017
  • Accepted Date:  18 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回