Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical model for space charge distribution measured by pressure wave propagation method in coaxial geometry

Sun Ya-Li Zhang Ye-Wen Stephane Hole Ma Peng Guo Cong Zheng Fei-Hu An Zhen-Lian

Citation:

Physical model for space charge distribution measured by pressure wave propagation method in coaxial geometry

Sun Ya-Li, Zhang Ye-Wen, Stephane Hole, Ma Peng, Guo Cong, Zheng Fei-Hu, An Zhen-Lian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid development of the science and technology, the application of the high voltage power cable has become more and more extensive. Now, it is generally accepted that space charge has an important effect on the electrical properties of insulating material in a high voltage cable. The measurement of space charge is the research base for the behaviors and properties of space charge in the polymer dielectric. Actually, the pressure wave propagation (PWP) method and pulsed electroacoustic (PEA) method are two sophisticated methods of measuring the space charge. However, these two methods are based on a planar sample. For measuring the space charge in a real cable, it is necessary to need the correct and precise mathematical expressions for the PWP method and PEA method. According to the theoretical analysis of the space charge distributions in the plate samples, measured by the pressure wave propagation method, we propose a physical model and its mathematical method of treating space charge distribution data measured in a coaxial geometry. In terms of Poisson equation, the influences of pressure waves on coaxial samples can be divided into two parts, namely, sample deformation and particle displacement. These two parts take into consideration the variations of the sample electric field, dielectric constant and density of space charge disturbed by pressure waves. Therefore, the voltage and current equations about the space charge distribution in the coaxial structure are found. The mathematical expression for the current measured indicates that compared with the current measured in the planar structure, which is proportional to the space charge distribution, the current signal measured in the coaxial structure should be further corrected. This paper also shows the experimental results which are the induced current signals picked from the planar sample and coaxial sample respectively. The results indicate that the current measured in the planar sample is proportional to the space charge distribution. However, the current measured in the planar sample is related to the inner and outer diameter of the dielectric, which verifies the correctness of the mathematical expression. Due to the influence of the coaxial structure of the high voltage cable, the pressure wave focusing effect is obvious as the pressure wave propagates along the axis, which causes the measurement signal to increase gradually with the propagation of sound wave. As a consequence, the electric field and the space charge density will change apparently. Due to the influence of the pressure wave focusing effect, the current and voltage signal will be amplified more obviously in cable, and the current measured by the PWP method shows the distribution of space charge density in cable.
      Corresponding author: Zhang Ye-Wen, yewen.zhang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51477118).
    [1]

    Boggs S 2004 IEEE Electr. Insul. Mag. 20 22

    [2]

    Lewiner J 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1096

    [3]

    Collins R E 1976 J. Appl. Phys. 47 4804

    [4]

    Laurenceau P, Ball J, Dreyfus G, Lewiner J 1976 CR Acad. Sci. Paris 283 135

    [5]

    Laurenceau P, Dreyfus G, Lewiner J 1977 Phys. Rev. Lett. 38 46

    [6]

    Sessler G M, West J E, Gerhard G 1982 Phys. Rev. Lett. 48 563

    [7]

    Satoh Y, Tanaka Y, Takada T 1997 Electr. Eng. Jpn. 121 1

    [8]

    Lang S B, Das-Gupta D K 1986 J. Appl. Phys. 59 2151

    [9]

    Li Y, Yasuda M, Takada T 1994 IEEE Trans. Dielectr. Electr. Insul. 1 188

    [10]

    Lewiner J, Hole S, Ditchi T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 114

    [11]

    International Electrotechnical Commission 2012 Calibration of Space Charge Measuring Equipment based on the Pulsed Electroacoustic (PEA) Measurement Principle IEC/TS 62758-2012

    [12]

    International Electrotechnical Commission Measurement of Internal Electric Field In Insulating Materials-Pressure Wave Propagation Method IEC/TR 62836-2013

    [13]

    Mahdavi S, Alquie C, Lewiner J 1989 CEIDP 10 296

    [14]

    Choo W, Chen G, Swingler S G 2011 IEEE Trans. Dielectr. Electr. Insul. 18 596

    [15]

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137 (in Chinese) [郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏忠福 2003 物理学报 52 1137]

    [16]

    Hole S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1208

    [17]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp299-302 (in Chinese) [莫尔斯 P M, 英格特K U 著(吕如榆, 杨训仁 译) 1986 理论声学 (北京: 科学出版社)第299-302页]

    [18]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp420-421 (in Chinese) [莫尔斯 P M, 英格特K U 著 (吕如榆, 杨训仁 译) 1986 理论声学(北京: 科学出版社) 第420-421页]

    [19]

    Hu L Q, Zhang Y W, Zheng F H 2005 IEEE Trans. Dielectr. Electr. Insul. 12 809

    [20]

    Ma P, Zhang Y W, Hol S, Zheng F H, An Z L 2015 Meas. Sci. Technol. 27 025003

    [21]

    Guo C, Zhang Y W, Zheng F H, An Z L, Zhu Z E, Yang L M, Zhang J, Yu E K 2017 1st IEEE International Conference on Electrical Materials and Power Equipment Xi'an, China, May 14-17, 2017 p30

  • [1]

    Boggs S 2004 IEEE Electr. Insul. Mag. 20 22

    [2]

    Lewiner J 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1096

    [3]

    Collins R E 1976 J. Appl. Phys. 47 4804

    [4]

    Laurenceau P, Ball J, Dreyfus G, Lewiner J 1976 CR Acad. Sci. Paris 283 135

    [5]

    Laurenceau P, Dreyfus G, Lewiner J 1977 Phys. Rev. Lett. 38 46

    [6]

    Sessler G M, West J E, Gerhard G 1982 Phys. Rev. Lett. 48 563

    [7]

    Satoh Y, Tanaka Y, Takada T 1997 Electr. Eng. Jpn. 121 1

    [8]

    Lang S B, Das-Gupta D K 1986 J. Appl. Phys. 59 2151

    [9]

    Li Y, Yasuda M, Takada T 1994 IEEE Trans. Dielectr. Electr. Insul. 1 188

    [10]

    Lewiner J, Hole S, Ditchi T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 114

    [11]

    International Electrotechnical Commission 2012 Calibration of Space Charge Measuring Equipment based on the Pulsed Electroacoustic (PEA) Measurement Principle IEC/TS 62758-2012

    [12]

    International Electrotechnical Commission Measurement of Internal Electric Field In Insulating Materials-Pressure Wave Propagation Method IEC/TR 62836-2013

    [13]

    Mahdavi S, Alquie C, Lewiner J 1989 CEIDP 10 296

    [14]

    Choo W, Chen G, Swingler S G 2011 IEEE Trans. Dielectr. Electr. Insul. 18 596

    [15]

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137 (in Chinese) [郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏忠福 2003 物理学报 52 1137]

    [16]

    Hole S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1208

    [17]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp299-302 (in Chinese) [莫尔斯 P M, 英格特K U 著(吕如榆, 杨训仁 译) 1986 理论声学 (北京: 科学出版社)第299-302页]

    [18]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp420-421 (in Chinese) [莫尔斯 P M, 英格特K U 著 (吕如榆, 杨训仁 译) 1986 理论声学(北京: 科学出版社) 第420-421页]

    [19]

    Hu L Q, Zhang Y W, Zheng F H 2005 IEEE Trans. Dielectr. Electr. Insul. 12 809

    [20]

    Ma P, Zhang Y W, Hol S, Zheng F H, An Z L 2015 Meas. Sci. Technol. 27 025003

    [21]

    Guo C, Zhang Y W, Zheng F H, An Z L, Zhu Z E, Yang L M, Zhang J, Yu E K 2017 1st IEEE International Conference on Electrical Materials and Power Equipment Xi'an, China, May 14-17, 2017 p30

  • [1] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] Guo Rong- Rong, Lin Jin-Hai, Liu Li-Li, Li Shi-Wei, Wang Chen, Lin Hai-Jun. Effect of deep level defects on space charge distribution in CdZnTe crystals. Acta Physica Sinica, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [3] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong. Measurement of space charges in air based on sound pulse method. Acta Physica Sinica, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [5] Guo Wei-Jie, Chen Zai-Gao, Cai Li-Bing, Wang Guang-Qiang, Cheng Guo-Xin. Numerical studies on a 0.14 THz coaxial surface wave oscillator with double-ring metamaterial slow wave structure. Acta Physica Sinica, 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [6] Wang Bing, Wen Guang-Jun, Wang Wen-Xiang. Dispersion characteristics of the coaxial interlaced disk-loaded waveguide slow-wave structure. Acta Physica Sinica, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [7] Zhang Zhao-Hui, Li Hai-Peng, Mao Shi-Chun. Effect of the structure and the arrangement of organic molecules on the atomic charge and electrostatic interaction. Acta Physica Sinica, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [8] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [9] Yu Huang-Zhong. Measurement of the hole mobility in the blend system by space charge limited current. Acta Physica Sinica, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [10] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [11] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [12] Ge Xing-Jun, Zhong Hui-Huang, Qian Bao-Liang, Zhang Jun. Comparative research on three types of coaxial double-corrugation periodic slow-wave structures. Acta Physica Sinica, 2010, 59(4): 2645-2652. doi: 10.7498/aps.59.2645
    [13] Chen Xi, Wang Xia, Wu Kai, Peng Zong-Ren, Cheng Yong-Hong. Effect of temperature gradient on space charge waveform in pulsed electroacoustic method. Acta Physica Sinica, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [14] Zhu Zhi-En, Zhang Ye-Wen, An Zhen-Lian, Zheng Fei-Hu. Experimental study on the distribution of trap levels in dielectric by photo-stimulated discharge. Acta Physica Sinica, 2010, 59(7): 5067-5072. doi: 10.7498/aps.59.5067
    [15] Xiao Chun, Zhang Ye-Wen, Lin Jia-Qi, Zheng Fei-Hu, An Zhen-Lian, Lei Qing-Quan. Research of the recombination rate of space charge in LDPE film during the short-circuit discharge process via the photon counting method. Acta Physica Sinica, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [16] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [17] Zheng Fei-Hu, Zhang Ye-Wen, Wu Chang-Shun, Li Ji-Xiao, Xia Zhong-Fu. Piezo-PWP and PEA methods for measuring space charge in solid dielectric. Acta Physica Sinica, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [18] LI ZHI-KUAN. SINGLE-ELECTRON ANALYSIS OF THE SPACE-CHARGE WAVE IN FREE-ELECTRON LASERS. Acta Physica Sinica, 1995, 44(11): 1747-1753. doi: 10.7498/aps.44.1747
    [19] GU YUAN-XIN, GE PEI-WEN, ZHAO YA-QIN, HU BO-QING, WU LAN-SHENG, FU QUAN-GUI. X-RAY TOPOGRAPHICAL STUDY ON DEFECTS IN α-LiIO3 DECORATED BY SPACE CHARGE DUE TO THE APPLIED DC FIELDS. Acta Physica Sinica, 1980, 29(6): 711-717. doi: 10.7498/aps.29.711
    [20] HSIEH CHIA-LIN. SPACE-CHARGE WAVE THEORY OF MULTIPLE BUNCHING. Acta Physica Sinica, 1957, 13(1): 16-29. doi: 10.7498/aps.13.16
Metrics
  • Abstract views:  4615
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2016
  • Accepted Date:  07 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回