Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization

Zhang Yan-Yan Chen Su-Ting Ge Jun-Xiang Wan Fa-Yu Mei Yong Zhou Xiao-Yan

Citation:

Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization

Zhang Yan-Yan, Chen Su-Ting, Ge Jun-Xiang, Wan Fa-Yu, Mei Yong, Zhou Xiao-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Adaptive optics (AO) system which is widely used in astronomical observations can improve the image quality by the real-time measurement and correction of the wave-front. One of the main problems in the AO system is the poor quality of the image because of the system noises. The noises in AO system are additive noises. The main sources of the noises are the background noise, the photon noise, and the readout noise of charge-coupled device. The background noise is distributed evenly and is easy to process. The photon noise is dependent on the characteristics of the spot itself. Readout noise, which is Gaussian distribution with the mean value of 0 and the variance of 2, is the main noise source in AO system. In this paper, we focus on the readout noise and propose a new regularization model to remove additive noises from the AO system. In this model, the regularization parameters can be adaptively changed. A nonconvex regularization term is used to make the homogeneous region of the image smooth efficiently, while the integrity of the spot can be well restored. The properties of the regularization proposed are shown below. 1) The proposed nonconvex regularization term can act as the L0 norm which is sparser than L1 norm. 2) The proposed model can protect the edge of the spot from over smoothing. To prevent the edges from over smoothing, the regularization parameter must be an increasing function. Moreover, it converges to a constant so that it cannot affect the strong gradient of the image. 3) The regularization term proposed is nonconvex which is more sensible to the minor change of the image. Therefore, the edges of the image can be better preserved. Though the proposed model can well preserve the edges of the spot, it is difficult to resolve by traditional methods because of the nonconvexity. Split Bregman algorithm and augmented Lagrangian duality algorithm are used to solve this problem. We can obtain a denoised spot image as well as an edge indicator by using the proposed model. The visual and quantitative evaluations are used to value the restored images. The evaluating indicators are the peak signal-to-noise ratio and centroid detecting error which includes the root mean square and the peak valley value of the centroid deviation. The simulation and experimental results show the efficiency of this model in removing the additive noises from the AO system.
      Corresponding author: Zhang Yan-Yan, 002243@nuist.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 61071164), the Major Project of Nature Science Foundation of Higher Education Institution of Jiangsu Province, China (Grant No. 12KJA510001), the Program of Jiangsu Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1405), the Jiangsu Province College Students Practice and Innovation Training Platform, China (Grant No. 201610300254), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Jiangsu Innovation and Entrepreneurship Group Talents Plan, China.
    [1]

    Roberto R, Enrico M, Gianpaolo V 2000 Nature 403 54

    [2]

    Law N M, Morton T, Baranec C, Riddle R, Ravichandran G, Ziegler C, Das H K 2014 Astrophys. J. 791 35

    [3]

    Adams E R, Dupree A K, Kulesa C, McCarthy D 2013 Astron. J. 146 71

    [4]

    Li C H, Xian H, Rao C H, Jiang W H 2006 Opt. Lett. 31 2821

    [5]

    Li C H, Xian H, Jiang W H, Rao C H 2007 Appl. Phys. B 88 367

    [6]

    Shen F, Jiang W H 2000 Acta Opt. Sin. 20 666 (in Chinese) [沈锋, 姜文汉 2000 光学学报 20 666]

    [7]

    Ma X Y, Rao C H, Zheng H Q 2009 Opt. Express 17 8525

    [8]

    Arines J, Ares J 2002 Opt. Lett. 27 497

    [9]

    Thomas S 2004 Proc. SPIE 5490 1238

    [10]

    Baker K L, Moallem M M 2007 Opt. Express 15 5147

    [11]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 1

    [12]

    Strong D M, Chan T F 1996 Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diffusion in Image Processing Diusion in Image Processing, UCLA Math Department CAM Report

    [13]

    Ramani S, Blu T, Unser M 2008 IEEE Trans. Image Process. 17 1540

    [14]

    Lin Y, Wohlberg B, Guo H 2010 Signal Process. 90 2546

    [15]

    Aubert G, Aujol J 2008 Siam. J. Appl. Math. 68 925

    [16]

    Han Y, Feng X C, Baciu G, Wang W W 2013 Pattern Recogn. 46 989

    [17]

    Alliney S, Ruzinsky S A 1994 IEEE Trans. Signal Process. 42 618

    [18]

    Mallat S M, Zhang Z F 1993 IEEE Trans. Signal Process. 41 3397

    [19]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [20]

    Donoho D, Tsaig Y 2006 Signal Process. 86 533

    [21]

    Goldstein T, Osher S 2009 Siam. J. Imag. Sci. 2 323

    [22]

    Tai X C, Wu C 2009 Scale Space and Variational Methods in Computer Vision Norway, June 1-5, 2009 p502

    [23]

    Gang P, Zeng H, Xuan L 2008 Chin. Phys. Lett. 25 989

    [24]

    Zhu Z Y, Da Y L, Li F H, Quan Q M, Cheng L Y, Zhao L C, Li X 2016 Chin. Phys. B 25 090702

    [25]

    Cheng S Y, Liu W J, Chen S Q, Dong L Z, Yang P, Xu B 2015 Chin. Phys. B 24 084214

  • [1]

    Roberto R, Enrico M, Gianpaolo V 2000 Nature 403 54

    [2]

    Law N M, Morton T, Baranec C, Riddle R, Ravichandran G, Ziegler C, Das H K 2014 Astrophys. J. 791 35

    [3]

    Adams E R, Dupree A K, Kulesa C, McCarthy D 2013 Astron. J. 146 71

    [4]

    Li C H, Xian H, Rao C H, Jiang W H 2006 Opt. Lett. 31 2821

    [5]

    Li C H, Xian H, Jiang W H, Rao C H 2007 Appl. Phys. B 88 367

    [6]

    Shen F, Jiang W H 2000 Acta Opt. Sin. 20 666 (in Chinese) [沈锋, 姜文汉 2000 光学学报 20 666]

    [7]

    Ma X Y, Rao C H, Zheng H Q 2009 Opt. Express 17 8525

    [8]

    Arines J, Ares J 2002 Opt. Lett. 27 497

    [9]

    Thomas S 2004 Proc. SPIE 5490 1238

    [10]

    Baker K L, Moallem M M 2007 Opt. Express 15 5147

    [11]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 1

    [12]

    Strong D M, Chan T F 1996 Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diffusion in Image Processing Diusion in Image Processing, UCLA Math Department CAM Report

    [13]

    Ramani S, Blu T, Unser M 2008 IEEE Trans. Image Process. 17 1540

    [14]

    Lin Y, Wohlberg B, Guo H 2010 Signal Process. 90 2546

    [15]

    Aubert G, Aujol J 2008 Siam. J. Appl. Math. 68 925

    [16]

    Han Y, Feng X C, Baciu G, Wang W W 2013 Pattern Recogn. 46 989

    [17]

    Alliney S, Ruzinsky S A 1994 IEEE Trans. Signal Process. 42 618

    [18]

    Mallat S M, Zhang Z F 1993 IEEE Trans. Signal Process. 41 3397

    [19]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [20]

    Donoho D, Tsaig Y 2006 Signal Process. 86 533

    [21]

    Goldstein T, Osher S 2009 Siam. J. Imag. Sci. 2 323

    [22]

    Tai X C, Wu C 2009 Scale Space and Variational Methods in Computer Vision Norway, June 1-5, 2009 p502

    [23]

    Gang P, Zeng H, Xuan L 2008 Chin. Phys. Lett. 25 989

    [24]

    Zhu Z Y, Da Y L, Li F H, Quan Q M, Cheng L Y, Zhao L C, Li X 2016 Chin. Phys. B 25 090702

    [25]

    Cheng S Y, Liu W J, Chen S Q, Dong L Z, Yang P, Xu B 2015 Chin. Phys. B 24 084214

  • [1] Chen Ke-Le, Zhou Jia-Hui, Han Wen-Yu, Rao Xue-Jun, Guo You-Ming, Rao Chang-Hui. Fast estimation method of optimal modal gain for adaptive optical system. Acta Physica Sinica, 2023, 72(13): 139502. doi: 10.7498/aps.72.20230290
    [2] Luo Xi, Li Xin-Yang, Hu Shi-Jie, Huang Kui, Wang Xiao-Yun. Experimental investigation of angular anisoplanatism for sodium beacon. Acta Physica Sinica, 2018, 67(9): 099501. doi: 10.7498/aps.67.20172686
    [3] Liu Zhang-Wen, Li Zheng-Dong, Zhou Zhi-Qiang, Yuan Xue-Wen. Adaptive optics correction technique based onfuzzy control. Acta Physica Sinica, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [4] Tang Yan-Qiu, Sun Qiang, Zhao Jian, Yao Kai-Nan. A closed-loop aberration compensating method of optics system based on holography. Acta Physica Sinica, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [5] Li Jin-Cai, Peng Yu-Xing, Zhu Min, Chen Peng. Spatially adapted total variation model with nonconvex regularizer based speckle reduction. Acta Physica Sinica, 2014, 63(18): 189501. doi: 10.7498/aps.63.189501
    [6] Guo You-Ming, Rao Chang-Hui, Bao Hua, Zhang Ang, Wei Kai. Direct computation of the interaction matrix of adaptive optical system. Acta Physica Sinica, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [7] Guo You-Ming, Ma Xiao-Yu, Rao Chang-Hui. Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system. Acta Physica Sinica, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [8] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [9] Liu Chao, Hu Li-Fa, Mu Quan-Quan, Cao Zhao-Liang, Hu Hong-Bin, Zhang Xing-Yun, Lu Yong-Jun, Xuan Li. Modal prediction for open-loop liquid-crystal adaptive optics systems. Acta Physica Sinica, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [10] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [11] Zhang Yan-Yan, Rao Chang-Hui, Li Mei, Ma Xiao-Yu. The detection error analysis of Hartmann-Shack wavefront sensor based on electron multiplying charge-coupled devices. Acta Physica Sinica, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [12] Bai Fu-Zhong, Rao Chang-Hui. Effect of pinhole diameter on measurement accuracy of self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [13] Bai Fu-Zhong, Rao Chang-Hui. Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [14] He Cheng-Di, Xu Wei, Yue Xiao-Le. The mean first-passage time in a mono-stable system driven by uncorrelated noises. Acta Physica Sinica, 2010, 59(8): 5276-5280. doi: 10.7498/aps.59.5276
    [15] Ning Yu, Yu Hao, Zhou Hong, Rao Chang-Hui, Jiang Wen-Han. Performance test and closed-loop correction experiment of a 20-element bimorph deformable mirror. Acta Physica Sinica, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [17] Ning Li-Juan, Xu Wei. Stochastic resonance in optical bistable system. Acta Physica Sinica, 2007, 56(4): 1944-1947. doi: 10.7498/aps.56.1944
    [18] Li Chao-Hong, Xian Hao, Jiang Wen-Han, Rao Chang-Hui. Analysis of wavefront measuring method for daytime adaptive optics. Acta Physica Sinica, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
    [19] Jin Yan-Fei, Xu Wei, Ma Shao-Juan, Li Wei. The mean first-passage time for an asymmetric bistable system driven by multiplicative and additive noise. Acta Physica Sinica, 2005, 54(8): 3480-3485. doi: 10.7498/aps.54.3480
    [20] Tan Ning, Xu Jian-Xue, Kang Yan-Mei, Chen Yong-Hong. The characters of riddled basins in coupled chaotic synchronized maps with addit ive noises. Acta Physica Sinica, 2003, 52(12): 2989-2994. doi: 10.7498/aps.52.2989
Metrics
  • Abstract views:  5748
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2017
  • Accepted Date:  29 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回