Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs

Deng Hong-Mei Huang Lei Li Jing Lu Ye Li Chuan-Qi

Citation:

Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs

Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Surface plasmon polaritons (SPPs), the electromagnetic waves traveling along metal-dielectric or metal-air interface, which originate from the interactions between light and collective electron oscillations on metal surface, have received considerable attention for their promising applications in the future optical field, such as image, breaking diffraction limit, subwavelength-optics microscopy, lithography, etc. However, one of the fundamental issues in plasmonics is how to actively manipulate the propagation direction of SPPs. In this paper, we propose and numerically investigate a graphene-based unidirectional SPP coupler, which is composed of asymmetric plasmonic nanoantenna pairs with a graphene sheet separated by a SiO2 spacer from the gold substrate. The device geometry facilitates the simultaneous excitation of two localized surface plasmon resonances in the entire structure, and consequently, the asymmetric nanoantenna pairs can be considered as being composed of two oscillating magnetic dipoles or as two SPP sources. Because the resonance of the plasmonic antenna pairs depends on the bias voltage applied across graphene sheet and back-gated Au, the phase difference between radiated electromagnetic waves induced by the antenna can be tuned through varying the Fermi level of graphene. Here, approximately a n/2 phase difference between radiated electromagnetic (EM) waves can be acquired at EF 0.81 eV, which indicates that the radiated EM waves can interfere constructively along the direction of the x-axis while interfere destructively along the opposite direction. This directional propagation of EM wave leads to the unidirectional propagation of SPPs. Furthermore, electric field distribution of the cavity demonstrates that the tunability of plasmonic antenna is proportional to the electric field intensity in the vicinity of the graphene region. For our designed structure, the left cavity can provide a significantly larger tunable range than the right one. With this result, we can quantitatively analyze the tuning behavior of graphene-loaded plasmonic antenna based on equivalent circuit model, and draw the conclusions that the unidirectional SPP propagation effect originates from the interference mechanism. In addition, compared with the device reported previously, our proposed device possesses a huge extinction ratio (2600) and more broadband tunable wavelength range (6.3-7.5 m). In addition, it is possible to make up for the deficiencies of current nanofabrication technologies by utilizing its actively controlled capability. All the above results indicate that the proposed active device promises to realize a compactable, tunable, and broadband terahertz plasmonic light source. It will play an important role in future photonic integrations and optoelectronics.
      Corresponding author: Huang Lei, huanglei313663@163.com;lcq@mailbox.gxnu.edu.cn ; Li Chuan-Qi, huanglei313663@163.com;lcq@mailbox.gxnu.edu.cn
    • Funds: Project supported by the Guangxi Scientific Research and Technological Development Program Topics, China (Grant No. 1598007-12) and the Innovation Project of Guangxi Graduate Education, China (Grant No. YCSZ2016035).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278

    [3]

    Chu Y Z, Banaee M G, Crozier K B 2010 ACS Nano 4 2804

    [4]

    Xia F N, Mueller T, Lin Y M, Garcia A V, Avouris P 2009 Nat. Nanotechnol. 4 839

    [5]

    Huang L, Fan Y H, Wu S, Yu L Z 2015 Chin. Phys. Lett. 32 094101

    [6]

    Li C Q, Huang L, Wang W Y, Ma X J, Zhou S B, Jiang Y H 2015 Opt. Commun. 355 337

    [7]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [8]

    He M D, Gong Z Q, Li S, Luo Y F, Liu J Q, Chen X S 2011 Opt. Commun. 284 368

    [9]

    Gao J, He M D, Chen K Q 2013 Opt. Commun. 291 366

    [10]

    He M D, Liu J Q, Gong Z Q, Li S, Luo Y F 2012 Opt. Commun. 285 182

    [11]

    Yang J, Zhou S X, Hu C, Zhang W W, Xiao X, Zhang J S 2014 Laser Photon. Rev. 8 590

    [12]

    Liu T R, Shen Y, Shin W, Zhu Q Z, Fan S H, Jin C J 2014 Nano Lett. 14 3848

    [13]

    Xiao S Y, Zhong F, Liu H, Zhu S N, Li J S 2015 Nat. Commun. 6 8326

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S 2014 Light: Sci. Appl. 3 e197

    [15]

    Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B, Zhang X 2012 Nano Lett. 12 4853

    [16]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [17]

    Bao Y J, Zu S, Zhang Y F, Fang Z Y 2015 ACS Photon. 2 1135

    [18]

    He M D, Wang K J, Wang L, Li J B, Liu J Q, Huang Z R, Wang L L, Wang L, Hu W D, Chen X S 2014 Appl. Phys. Lett. 105 081903

    [19]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Zhu L, Fan Y H, Wu S, Yu L Z, Zhang K Y, Zhang Y 2015 Opt. Commun. 346 120

    [22]

    Chen J J, Li Z, Yue S, Gong Q H 2010 Appl. Phys. Lett. 97 041113

    [23]

    Huang L, Wu S, Wang Y L, Ma X J, Deng H M, Wang S M, Lu Y, Li C Q, Li T 2017 Opt. Mater. Express 7 569

    [24]

    Wang Z L 2009 Prog. Phys. 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [25]

    Yang J, Xiao X, Hu C, Zhang W W, Zhou S X, Zhang J S 2014 Nano Lett. 14 704

    [26]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278

    [3]

    Chu Y Z, Banaee M G, Crozier K B 2010 ACS Nano 4 2804

    [4]

    Xia F N, Mueller T, Lin Y M, Garcia A V, Avouris P 2009 Nat. Nanotechnol. 4 839

    [5]

    Huang L, Fan Y H, Wu S, Yu L Z 2015 Chin. Phys. Lett. 32 094101

    [6]

    Li C Q, Huang L, Wang W Y, Ma X J, Zhou S B, Jiang Y H 2015 Opt. Commun. 355 337

    [7]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [8]

    He M D, Gong Z Q, Li S, Luo Y F, Liu J Q, Chen X S 2011 Opt. Commun. 284 368

    [9]

    Gao J, He M D, Chen K Q 2013 Opt. Commun. 291 366

    [10]

    He M D, Liu J Q, Gong Z Q, Li S, Luo Y F 2012 Opt. Commun. 285 182

    [11]

    Yang J, Zhou S X, Hu C, Zhang W W, Xiao X, Zhang J S 2014 Laser Photon. Rev. 8 590

    [12]

    Liu T R, Shen Y, Shin W, Zhu Q Z, Fan S H, Jin C J 2014 Nano Lett. 14 3848

    [13]

    Xiao S Y, Zhong F, Liu H, Zhu S N, Li J S 2015 Nat. Commun. 6 8326

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S 2014 Light: Sci. Appl. 3 e197

    [15]

    Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B, Zhang X 2012 Nano Lett. 12 4853

    [16]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [17]

    Bao Y J, Zu S, Zhang Y F, Fang Z Y 2015 ACS Photon. 2 1135

    [18]

    He M D, Wang K J, Wang L, Li J B, Liu J Q, Huang Z R, Wang L L, Wang L, Hu W D, Chen X S 2014 Appl. Phys. Lett. 105 081903

    [19]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Zhu L, Fan Y H, Wu S, Yu L Z, Zhang K Y, Zhang Y 2015 Opt. Commun. 346 120

    [22]

    Chen J J, Li Z, Yue S, Gong Q H 2010 Appl. Phys. Lett. 97 041113

    [23]

    Huang L, Wu S, Wang Y L, Ma X J, Deng H M, Wang S M, Lu Y, Li C Q, Li T 2017 Opt. Mater. Express 7 569

    [24]

    Wang Z L 2009 Prog. Phys. 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [25]

    Yang J, Xiao X, Hu C, Zhang W W, Zhou S X, Zhang J S 2014 Nano Lett. 14 704

    [26]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [8] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [9] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [11] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [12] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [13] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [14] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [15] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [16] Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna. Acta Physica Sinica, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
Metrics
  • Abstract views:  5128
  • PDF Downloads:  274
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2017
  • Accepted Date:  20 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回