Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-modulated photoreflectance spectra of semi-insulating GaAs

Liu Xue-Lu Wu Jiang-Bin Luo Xiang-Dong Tan Ping-Heng

Citation:

Dual-modulated photoreflectance spectra of semi-insulating GaAs

Liu Xue-Lu, Wu Jiang-Bin, Luo Xiang-Dong, Tan Ping-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For a semiconductor material, the characterization of its electronic band structure is very important for analyzing its physical properties and applications in semiconductor-based devices. Photoreflectance spectroscopy is a contactless and highly sensitive method of characterizing electronic band structures of semiconductor materials. In the photoreflectance spectroscopy, the modulation of pumping laser can cause a change in material dielectric function particularly around the singularity points of joint density of states. Thus the information about the critical points in electronic band structure can be obtained by measuring these subtle changes. However, in the conventional single-modulated photoreflectance spectroscopy, Rayleigh scattering and inevitable photoluminescence signals originating from the pumping laser strongly disturb the line shape fitting of photoreflectance signal and influence the determination of critical point numbers. Thus, experimental technique of photoreflectance spectroscopy needs further optimizing. In this work, we make some improvements on the basis of traditional measurement technique of photoreflectance spectroscopy. We set an additional optical chopper for the pumping laser which can modulate the amplitude of the photoreflectance signal. We use a dual-channel lock-in amplifier to demodulate both the unmodulated reflectance signals and the subtle changes in modulated reflectance signals at the same time, which avoids the systematic errors derived from multiple measurements compared with the single-modulated photoreflectance measurement. The combination of dual-modulated technique and dual-channel lock-in amplifier can successfully eliminate the disturbances from Rayleigh scattering and photoluminescence, thus improving the signal-to-noise ratio of the system. Under a visible laser (2.33 eV) pumping, we measure the room-temperature dual-modulated photoreflectance spectrum of semi-insulating GaAs in a region from near-infrared to ultraviolet (1.1 ~6.0 eV) and obtain several optical features which correspond to certain critical points in its electronic band structure. Besides the unambiguously resolved energy level transition of E0 and E0+0 around the bandgap, we also obtain several high-energy optical features above the energy of pumping laser which are related to high-energy level transitions of E1, E1+1, E0' and E2 in the electronic band structure of GaAs. This is consistent with the results from ellipsometric spectroscopy and electroreflectance spectroscopy. The results demonstrate that for those high-energy optical features, the mechanism for photoreflectance is that the photon-generated carriers modulate the build-in electric field which affects the overall electronic band structures, rather than the band filling effect around those critical points. This indicates that dual-modulated photoreflectance performs better in the characterization of semiconductors electronic band structure at critical point around and above its bandgap.
      Corresponding author: Luo Xiang-Dong, luoxd@ntu.edu.cn;phtan@semi.ac.cn ; Tan Ping-Heng, luoxd@ntu.edu.cn;phtan@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474067, 11474277, 11434010) and the National Key Research and Development Program of China (Grant No. 2016YFA0301204).
    [1]

    Aspnes D E 1973 Surf. Sci. 37 418

    [2]

    Pollak F H, Shen H 1989 Superlattices Microstruct. 6 203

    [3]

    Supplee J M, Whittaker E A, Lenth W 1994 Appl. Opt. 33 6294

    [4]

    Shen H, Dutta M, Fotiadis L, Newman P G, Moerkirk R P, Chang W H, Sacks R N 1990 Appl. Phys. Lett. 57 2118

    [5]

    Misiewicz J, Sitarek P, Sek G, Kudrawiec R 2003 Mater. Sci. 21 263

    [6]

    Chen X, Jung J, Qi Z, Zhu L, Park S, Zhu L, Yoon E, Shao J 2015 Opt. Lett. 40 5295

    [7]

    Badakhshan A, Glosser R, Lambert S 1991 J. Appl. Phys. 69 2525

    [8]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [9]

    Kanata T, Matsunaga M, Takakura H, Hamakawa Y, Nishino T 1991 J. Appl. Phys. 69 3691

    [10]

    Lin K I, Chen Y J, Wang B Y, Cheng Y C, Chen C H 2016 J. Appl. Phys. 119 115703

    [11]

    Dybala F, Polak M P, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R 2016 Sci. Rep. 6 26663

    [12]

    Theis W M, Sanders G D, Leak C E, Bajaj K K, Morkoc H 1988 Phys. Rev. B 37 3042

    [13]

    Sydor M, Badakhshan A 1991 J. Appl. Phys. 70 2322

    [14]

    Shao J, Chen L, L X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908

    [15]

    Ghosh S, Arora B M 1998 Rev. Sci. Instrum. 69 1261

    [16]

    Plaza J, Ghita D, Castano J L, Garcia B J 2007 J. Appl. Phys. 102 093507

    [17]

    Qin J H, Huang Z M, Ge Y J, Hou Y, Chu J H 2009 Rev. Sci. Instrum. 80 033112

    [18]

    Kudrawiec R, Misiewicz J 2009 Rev. Sci. Instrum. 80 096103

    [19]

    Kita T, Yamada M, Wada O 2008 Rev. Sci. Instrum. 79 046110

    [20]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [21]

    Ben Sedrine N, Moussa I, Fitouri H, Rebey A, El Jani B, Chtourou R 2009 Appl. Phys. Lett. 95 011910

    [22]

    Aspnes D E, Studna A A 1973 Phys. Rev. B 7 4605

    [23]

    Nahory R E, Shay J L 1968 Phys. Rev. Lett. 21 1569

    [24]

    Lastras-Martnez L F, Chavira-Rodrguez M, Lastras-Martnez A, Balderas-Navarro R E 2002 Phys. Rev. B 66 075315

    [25]

    Shay J L 1970 Phys. Rev. B 2 803

    [26]

    Wang R, Jiang D 1992 J. Appl. Phys. 72 3826

    [27]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [28]

    Glembocki O J, Shanabrook B V, Bottka N, Beard W T, Comas J 1985 Appl. Phys. Lett. 46 970

    [29]

    Jo H J, So M G, Kim J S, Lee S J 2016 J. Korean Phys. Soc. 69 826

    [30]

    Klar P J, Townsley C M, Wolverson D, Davies J J, Ashenford D E, Lunn B 1995 Semicond. Sci. Technol. 10 1568

  • [1]

    Aspnes D E 1973 Surf. Sci. 37 418

    [2]

    Pollak F H, Shen H 1989 Superlattices Microstruct. 6 203

    [3]

    Supplee J M, Whittaker E A, Lenth W 1994 Appl. Opt. 33 6294

    [4]

    Shen H, Dutta M, Fotiadis L, Newman P G, Moerkirk R P, Chang W H, Sacks R N 1990 Appl. Phys. Lett. 57 2118

    [5]

    Misiewicz J, Sitarek P, Sek G, Kudrawiec R 2003 Mater. Sci. 21 263

    [6]

    Chen X, Jung J, Qi Z, Zhu L, Park S, Zhu L, Yoon E, Shao J 2015 Opt. Lett. 40 5295

    [7]

    Badakhshan A, Glosser R, Lambert S 1991 J. Appl. Phys. 69 2525

    [8]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [9]

    Kanata T, Matsunaga M, Takakura H, Hamakawa Y, Nishino T 1991 J. Appl. Phys. 69 3691

    [10]

    Lin K I, Chen Y J, Wang B Y, Cheng Y C, Chen C H 2016 J. Appl. Phys. 119 115703

    [11]

    Dybala F, Polak M P, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R 2016 Sci. Rep. 6 26663

    [12]

    Theis W M, Sanders G D, Leak C E, Bajaj K K, Morkoc H 1988 Phys. Rev. B 37 3042

    [13]

    Sydor M, Badakhshan A 1991 J. Appl. Phys. 70 2322

    [14]

    Shao J, Chen L, L X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908

    [15]

    Ghosh S, Arora B M 1998 Rev. Sci. Instrum. 69 1261

    [16]

    Plaza J, Ghita D, Castano J L, Garcia B J 2007 J. Appl. Phys. 102 093507

    [17]

    Qin J H, Huang Z M, Ge Y J, Hou Y, Chu J H 2009 Rev. Sci. Instrum. 80 033112

    [18]

    Kudrawiec R, Misiewicz J 2009 Rev. Sci. Instrum. 80 096103

    [19]

    Kita T, Yamada M, Wada O 2008 Rev. Sci. Instrum. 79 046110

    [20]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [21]

    Ben Sedrine N, Moussa I, Fitouri H, Rebey A, El Jani B, Chtourou R 2009 Appl. Phys. Lett. 95 011910

    [22]

    Aspnes D E, Studna A A 1973 Phys. Rev. B 7 4605

    [23]

    Nahory R E, Shay J L 1968 Phys. Rev. Lett. 21 1569

    [24]

    Lastras-Martnez L F, Chavira-Rodrguez M, Lastras-Martnez A, Balderas-Navarro R E 2002 Phys. Rev. B 66 075315

    [25]

    Shay J L 1970 Phys. Rev. B 2 803

    [26]

    Wang R, Jiang D 1992 J. Appl. Phys. 72 3826

    [27]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [28]

    Glembocki O J, Shanabrook B V, Bottka N, Beard W T, Comas J 1985 Appl. Phys. Lett. 46 970

    [29]

    Jo H J, So M G, Kim J S, Lee S J 2016 J. Korean Phys. Soc. 69 826

    [30]

    Klar P J, Townsley C M, Wolverson D, Davies J J, Ashenford D E, Lunn B 1995 Semicond. Sci. Technol. 10 1568

  • [1] Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan. Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation. Acta Physica Sinica, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [3] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [4] Zhang Zhen-Fang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Properties of band gaps in phononic crystal pipe consisting of expansion chambers with extended inlet/outlet. Acta Physica Sinica, 2018, 67(7): 074301. doi: 10.7498/aps.67.20172383
    [5] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [6] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [7] Dai Zhong-Hua, Qian Yi-Chen, Xie Yao-Ping, Hu Li-Juan, Li Xiao-Di, Ma Hai-Tao. First-principle study of effect of asymmetric biaxial tensile strain on band structure of Germanium. Acta Physica Sinica, 2017, 66(16): 167101. doi: 10.7498/aps.66.167101
    [8] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] Xu Jun-Min, Hu Xiao-Hui, Sun Li-Tao. Electrical properties of platinum doped armchair graphene nanoribbons. Acta Physica Sinica, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [10] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] Xu Ling, Tang Chao-Qun, Qian Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2. Acta Physica Sinica, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [13] Hao Guo-Jun, Fu Xiu-Jun, Hou Zhi-Lin. Band structure of phononic crystal constructed by Fibonacci super-cell on square lattice. Acta Physica Sinica, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [14] Shao Ming-Zhu, Luo Shi-Yu. The sine-squared potential and the band structure for channelling effects. Acta Physica Sinica, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [15] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [16] Bao Zhi-Hua, Jing Wei-Ping, Luo Xiang-Dong, Tan Ping-Heng. Optical properties of the E0+Δ0 energy level higher than the bandgap of GaAs studied by micro-photoluminescence technique. Acta Physica Sinica, 2007, 56(7): 4213-4217. doi: 10.7498/aps.56.4213
    [17] Wu Yun-Wen, Hai Wen-Hua, Cai Li-Hua. Energy band structure of two ions in a one-dimensional Paul trap. Acta Physica Sinica, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [18] Liu Xing-Hui, Zhu Chang-Chun, Zeng Fan-Guang, He Yong-Ning, Bao Wen-Xing. The effect of interwall coupling interaction on the field emission characteristics of commensurate double-walled carbon nanotubes. Acta Physica Sinica, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
    [19] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  4938
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2017
  • Accepted Date:  28 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回