Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of atmosphere attenuation on quantum interferometric radar

Wang Shu Ren Yi-Chong Rao Rui-Zhong Miao Xi-Kui

Citation:

Influence of atmosphere attenuation on quantum interferometric radar

Wang Shu, Ren Yi-Chong, Rao Rui-Zhong, Miao Xi-Kui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There has been aroused much interest in quantum metrology such as quantum radar, due to its applications in sub-Raleigh ranging and remote sensing. For quantum radar, the atmospheric absorption and diffraction rapidly degrade any actively transmitted quantum states of light, such as N00N and MM' states. Thus for the high-loss condition, the optimal strategy is to transmit coherent state of light, which can only provide sensitivity at the shot-noise limit but suffer no worse loss than the linear Beer's law for classical radar attenuation. In this paper, the target detection theory of quantum interferometric radar in the presence of photon loss is thoroughly investigated with the model of Mach-Zehnder interferometer, and the dynamic evolution of the quantum light field in the detecting process is also investigated. We utilize the parity operator to detect the return signal of quantum interferometric radar with coherent-state source. Then we compare the detection result of quantum radar with that of classical radar, which proves that the quantum radar scheme that employs coherent radiation sources and parity operator detection can provide an N-fold super-resolution, which is much below the Rayleigh diffraction limit; besides, the sensitivity of this scheme can also achieve the shot-noise-limit. Also, we analyze the effect of atmospheric attenuation on the performance of quantum radar, and find that the sensitivity is seriously influenced by atmospheric attenuation:only when the reference beam and the detection beam have the same transmissivity, will the sensitivity increase monotonically with increasing the photon number per pulse N, otherwise it first increases and then decreases with increasing N. Further, the sensivity is directly proportional to 1/N for the first case. In conclusion, we investigate the effects of atmospheric absorption on the resolution and sensitivity of quantum radar, and find that one can overcome the harmful effects of atmospheric attenuation by adjusting the transmissivity of reference beam to the atmospheric transmittance.
      Corresponding author: Ren Yi-Chong, rych@aiofm.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No.11574295) and the Key Laboratory of ElectroOptical Countermeasures Test and Evaluation Technology,China (Grant No.GKCP2016001).
    [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 物理学报 64 154203]

    [3]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p95

    [9]

    Jehle R E, Hudson D F 1992 US Patent 5 095 312 [1992-3-10]

    [10]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-Free Amplification: Towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [11]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [12]

    Lloyd S 2008 Science 321 1463

    [13]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirnadola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [14]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310

    [15]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [16]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63

    [17]

    Nair R, Yen B J, Shapiro J H, Chen J, Dutton Z, Guha S, Silva M P 2011 Proc. SPIE 8163 816310

    [18]

    Ekert A K, Rarity J G, Tapster P R, Palam G M 1992 Phys. Rev. Lett. 69 1293

    [19]

    Allen E H, Karageorgis M 2008 US Patent 7375802 B2

    [20]

    Smith J F 2010 Proc. SPIE 7702 p131

    [21]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [22]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161, 162

    [23]

    Ren Y C, Fan H Y 2016 Acta Phys. Sin. 65 030301 (in Chinese) [任益充, 范洪义 2016 物理学报 65 030301]

    [24]

    Howard C 1999 Statistical Methods in Quantum Optics 1: Master Equation and F-P Equation (Berlin Heidelberg: Springer-Verlag Press) p9

    [25]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [26]

    Kok P, Braunstein S L, Dowling J P 2004 J. Opt. B 6 S811

    [27]

    Kok P, Boto A N, Abarms D S, Williams C P, Braunstein S L, Dowling J P 2001 Phys. Rev. A 63 063407

    [28]

    Knysh S, Smelyanskil V N, Durkin G A 2011 Phys. Rev. A 83 021804

    [29]

    Lee T W, Huver S D, Lee H, Kaplan L, McCracken S B, Min C, Uskov D B, Wildfeuer C F, Veronis G, Dowling J P 2009 Phys. Rev. A 80 063803

    [30]

    Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, O'Brien J L, White A G 2007 Phys. Rev. Lett. 98 223601

    [31]

    Huver S D, Wildfeuer C F, Dowling J P 2008 Phys. Rev. A 78 063828

    [32]

    Wang Q, Hao L L, Zhang Y, Xu L, Yang C H, Yang X, Zhao Y 2016 Opt. Express 24 5045

    [33]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 J. Appl. Phys. 114 193102

    [34]

    Fan H Y 1992 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) p44 (in Chinese) [范洪义 1992 量子力学表象与变换论(上海: 上海科学技术出版社) 第44页]

    [35]

    Distante E, Jezek M, Andersen U L 2013 Phys. Rev. Lett. 111 033603

    [36]

    Feng X M, Jin G Y, Yang W 2014 Phys. Rev. A 90 013807

  • [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 物理学报 64 154203]

    [3]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p95

    [9]

    Jehle R E, Hudson D F 1992 US Patent 5 095 312 [1992-3-10]

    [10]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-Free Amplification: Towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [11]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [12]

    Lloyd S 2008 Science 321 1463

    [13]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirnadola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [14]

    Guha S, Erkmen B I 2009 Phys. Rev. A 80 052310

    [15]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [16]

    Dutton Z, Shapiro J H, Guha S 2010 J. Opt. Soc. Am. B 27 A63

    [17]

    Nair R, Yen B J, Shapiro J H, Chen J, Dutton Z, Guha S, Silva M P 2011 Proc. SPIE 8163 816310

    [18]

    Ekert A K, Rarity J G, Tapster P R, Palam G M 1992 Phys. Rev. Lett. 69 1293

    [19]

    Allen E H, Karageorgis M 2008 US Patent 7375802 B2

    [20]

    Smith J F 2010 Proc. SPIE 7702 p131

    [21]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [22]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161, 162

    [23]

    Ren Y C, Fan H Y 2016 Acta Phys. Sin. 65 030301 (in Chinese) [任益充, 范洪义 2016 物理学报 65 030301]

    [24]

    Howard C 1999 Statistical Methods in Quantum Optics 1: Master Equation and F-P Equation (Berlin Heidelberg: Springer-Verlag Press) p9

    [25]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [26]

    Kok P, Braunstein S L, Dowling J P 2004 J. Opt. B 6 S811

    [27]

    Kok P, Boto A N, Abarms D S, Williams C P, Braunstein S L, Dowling J P 2001 Phys. Rev. A 63 063407

    [28]

    Knysh S, Smelyanskil V N, Durkin G A 2011 Phys. Rev. A 83 021804

    [29]

    Lee T W, Huver S D, Lee H, Kaplan L, McCracken S B, Min C, Uskov D B, Wildfeuer C F, Veronis G, Dowling J P 2009 Phys. Rev. A 80 063803

    [30]

    Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, O'Brien J L, White A G 2007 Phys. Rev. Lett. 98 223601

    [31]

    Huver S D, Wildfeuer C F, Dowling J P 2008 Phys. Rev. A 78 063828

    [32]

    Wang Q, Hao L L, Zhang Y, Xu L, Yang C H, Yang X, Zhao Y 2016 Opt. Express 24 5045

    [33]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 J. Appl. Phys. 114 193102

    [34]

    Fan H Y 1992 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) p44 (in Chinese) [范洪义 1992 量子力学表象与变换论(上海: 上海科学技术出版社) 第44页]

    [35]

    Distante E, Jezek M, Andersen U L 2013 Phys. Rev. Lett. 111 033603

    [36]

    Feng X M, Jin G Y, Yang W 2014 Phys. Rev. A 90 013807

  • [1] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [3] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [4] Ren Yi-Chong, Wang Shu, Rao Rui-Zhong, Miao Xi-Kui. Influence of atmospheric scintillation on entangled coherent states quantum interferometric radar. Acta Physica Sinica, 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [5] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [6] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [7] Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua. Far-field time reversal subwavelength imaging of sources based on grating structure. Acta Physica Sinica, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [8] Pi Shao-Hua, Wang Bing-Jie, Zhao Dong, Jia Bo. Multi-resolution intrusion localization algorithm through cepstrum in distributed fiber optic Sagnac interferometer. Acta Physica Sinica, 2016, 65(4): 044210. doi: 10.7498/aps.65.044210
    [9] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [10] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [11] He Lin-Yang, Liu Jing-Hong, Li Gang. Super resolution of aerial image by means of polyphase components reconstruction. Acta Physica Sinica, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [12] Liang Mei-Yan, Zhang Cun-Lin. Improvement in the range resolution of THz radar using phase compensation algorithm. Acta Physica Sinica, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [13] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [14] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [15] Liang Mu-Sheng, Wang Bing-Zhong, Zhang Zhi-Min, Ding Shuai, Zang Rui. Subwavelength antenna array based on far-field time reversal. Acta Physica Sinica, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [16] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [17] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [18] Sun Zeng-Guo, Han Chong-Zhao. Modeling high-resolution synthetic aperture radar images with heavy-tailed distributions. Acta Physica Sinica, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [19] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
Metrics
  • Abstract views:  5924
  • PDF Downloads:  267
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2017
  • Accepted Date:  03 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回