Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum trajectory simulation for nonadiabatic molecular dynamics

Li Xiao-Ke Feng Wei

Citation:

Quantum trajectory simulation for nonadiabatic molecular dynamics

Li Xiao-Ke, Feng Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The mixed quantum-classical (MQC) molecular dynamics (MD) approaches are extremely important in practice since, with the increase of atomic degrees of freedom, a full quantum mechanical evaluation for molecular dynamics would quickly become intractable. Moreover, in some cases, the nonadiabatic effects are of crucial importance in the proximity of conical intersection of potential energy surfaces (PESs), where the energy separation between different PESs becomes comparable to the nonadiabatic coupling. In the past decades, there has been great interest in developing and improving various nonadiabatic MQC-MD protocols. The widely known nonadiabatic MD proposals include the so-called Ehrenfest or time-dependent-Hartree mean-field approach, the trajectory surface-hopping method, and their mixed scheme. Among the trajectory-based surface hopping methods, the most popular one is Tully's fewest switches surface hopping approach. In this approach, the nonadiabatic dynamics is treated by allowing hops from one PES to another, with the hopping probability determined by a certain artificial hopping algorithm. In our present work, we extend the study of a recent work on the nonadiabatic MQC-MD scheme, which is based on a view that the nonadiabatic MQC-MD actually implies an effective quantum measurement on the electronic states by the classical motion of atoms. The new protocol, say, the quantum trajectory (QT) approach, provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also connects two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. In our present study, we implement further the QT approach to simulate several typical potential-surface models, i.e., including the single avoided crossing, dual avoided crossing, extended coupling, dumbbell and double arch potentials. In particular, we simulate and compare three decoherence rates, which are from different physical considerations, i.e., the frozen Gaussian approximation, energy discrimination and force discrimination. We also design simulation algorithms to properly account for the energy conservation and force direction change associated with the surface hopping. In most cases, we find that the QT results are in good agreement with those from the full quantum dynamics, which is insensitive to the specific form of the decoherence rate. But for the model involving strong quantum interference, like other nonadiabatic MQC-MD schemes, the QT approach cannot give desirable results. Developing better method should be useful for future investigations in this research area.
      Corresponding author: Feng Wei, fwphy@tju.edu.cn
    [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • [1] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [2] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [3] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [4] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [5] Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality of two-qubit entangled states under decoherence. Acta Physica Sinica, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [6] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [8] Zhao Hu, Li Tie-Fu, Liu Qi-Chun, Zhang Ying-Shan, Liu Jian-She, Chen Wei. Decoherence characterization of three-dimensional transmon. Acta Physica Sinica, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [9] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Isolated 38 as pulse generation from two-color pulse. Acta Physica Sinica, 2013, 62(7): 073203. doi: 10.7498/aps.62.073203
    [10] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [11] Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan. Decoherence by a classically small influence. Acta Physica Sinica, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [12] Li Hai-Hong, Liu Wen, Liu De-Sheng. Influence of the choice of zero electric potential energy on charge injection in theoretical calculation. Acta Physica Sinica, 2011, 60(9): 097201. doi: 10.7498/aps.60.097201
    [13] Song Li-Jun, Yan Dong, Gai Yong-Jie, Wang Yu-Bo. Quantum chaos and the dynamic properties of single-particle coherence in Dicke model. Acta Physica Sinica, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [14] Chen Ji-Gen, Chen Gao, Chi Fang-Ping, Yang Yu-Jun. Generation of a broadband soft X-ray supercontinuum by quantum path control. Acta Physica Sinica, 2010, 59(5): 3162-3167. doi: 10.7498/aps.59.3162
    [15] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [16] Li Hai-Hong, Li Dong-Mei, Liu Wen, Li Yuan, Liu Xiao-Jing, Liu De-Sheng, Xie Shi-Jie. Injection and transport of the charge carriers in metal/impurity polymer/metal structure. Acta Physica Sinica, 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [17] Tan Xia, Zhang Cheng-Qiang, Xia Yun-Jie. Entanglement and intrinsic decoherence in the interaction between two-mode field and atom. Acta Physica Sinica, 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [18] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [19] Zuo Wei, Wang Shun-Jin, A.Weiguny, Li Fu-Li. . Acta Physica Sinica, 1995, 44(8): 1184-1191. doi: 10.7498/aps.44.1184
    [20] Zuo Wei, Wang Shun-Jin. . Acta Physica Sinica, 1995, 44(8): 1177-1183. doi: 10.7498/aps.44.1177
Metrics
  • Abstract views:  7029
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2017
  • Accepted Date:  16 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回