Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography

Guo Ge-Pu Su Hui-Dan Ding He-Ping Ma Qing-Yu

Citation:

Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography

Guo Ge-Pu, Su Hui-Dan, Ding He-Ping, Ma Qing-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a new treatment modality with little thermal damage and few cell metastases to surrounding normal tissues, high intensity focused ultrasound (HIFU) therapy is considered to be one of the most promising technologies for tumor therapy in the 21st century. However, noninvasive temperature monitoring for the focal region exhibits great significance of precise thermal dosage control in HIFU treatment. By combining electrical impedance measurement and HIFU, an electrical impedance tomography (EIT) based temperature monitoring method using surface voltages is proposed to reconstruct the distribution of electrical conductivity inside the focal plane on the basis of the temperature dependent electrical impedance of tissues. In theoretical study, a comprehensive system of EIT measurement during HIFU therapy is established. With the consideration of acoustic absorption in viscous tissues, three-dimensional Helmholtz equation for HIFU is simplified into two-dimensional axisymmetric cylindrical coordinates, and the characteristics of temperature rising in the focal region are derived using Pennes bio-heat transfer equation. Then, by introducing the temperature-conductivity relation into tissues, the processing methods for electrical field and surface voltage in the focal region are constructed with constant current injection from two symmetrical electrodes. In simulation study, by applying the experimental parameters of the focused transducer, the distributions of acoustic pressure and temperature are simulated at a fixed acoustic power, and then the corresponding distributions of conductivity in the focal plane are achieved at different treatment times for centric and eccentric focusing. Furthermore, with the simulations of current density and electrical potential generated by the rotating current injection from 16 pairs of symmetrical electrodes, 32×32 voltages are detected by the 32 surface electrodes placed around the focal plane of the model. In conductivity image reconstruction, the modified Newton-Raphson (MNR) algorithm is employed to conduct iterative calculation. It shows that with the increase of HIFU treatment time, the electrical conductivity in the focal region increases accordingly and reaches a maximum value in the center due to the highest acoustic pressure and the most energy accumulation. It is proved that not only the position of the focal center, but also the conductivity distribution inside the focal region can be restored accurately by the proposed EIT based reconstruction algorithm. The favorable results demonstrate the feasibility of temperature monitoring during HIFU therapy, and also provide a new method of evaluating the noninvasive efficacy and controlling the dose based on electrical impedance measurements.
      Corresponding author: Ma Qing-Yu, maqingyu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166, 11604156), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Hutchinson L 2011 Nat. Rev. Clin. Oncol. 8 385

    [2]

    Kennedy J E 2005 Nat. Rev. Canc. 5 321

    [3]

    Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501 (in Chinese)[钱盛友, 王鸿樟2001物理学报50 501]

    [4]

    Gavrilov L R 2013 J. Acoust. Soc. Amer. 133 4348

    [5]

    Jiang L X, Hu B 2006 Tech. Acoust. 25 43(in Chinese)[姜立新, 胡兵2006声学技术25 43]

    [6]

    Shen J, Shen J L, Zou J Z 2007 J. Ultrasound Clin. Med. 9 486(in Chinese)[沈洁, 申俊玲, 邹建中2007临床超声医学杂志9 486]

    [7]

    Ye G, Smith P P, Noble J A 2010 Ultrasound Med. Biol. 36 234

    [8]

    Daniels M J, Varghese T, Madsen E L, Zagzebski J A 2007 Phys. Med. Biol. 52 4827

    [9]

    Fan T B, Zhang D, Zhang Z, Ma Y, Gong X F 2008 Chin. Phys. B 17 3372

    [10]

    Anand A, Kaczkowski P J 2004 J. Acoust. Soc. Amer. 115 2490

    [11]

    Ma Y, Zhang D, Gong X F, Liu X Z, Ma Q Y, Qiu Y Y 2007 Chin. Phys. 16 2745

    [12]

    Fan L Z, Luo F, Yu D Y, Liu X T, Zhang J, Xie M X 2005 Clin. J. Med. Instru. 29 115(in Chinese)[范良志, 罗飞, 喻道远, 刘夏天, 张静, 谢明星2005中国医疗器械杂志29 115]

    [13]

    Gabriel C, Peyman A, Grant E H 2009 Phys. Med. Biol. 54 4863

    [14]

    Zurbuchen U, Holmer C, Lehmann K S, Stein T, Roggan A, Seifarth C, Buhr H J, Ritz J P 2010 Int. J. Hyperthermia 26 26

    [15]

    Griffiths H, Ahmed A 1987 Clin. Phys. Physiol. Meas. 8 147

    [16]

    Cai H, You F S, Shi X T, Fu F, Liu R G, Tang C, Dong X Z 2010 Chin. Med. Equip. J. 31 8(in Chinese)[蔡华, 尤富生, 史学涛, 付峰, 刘锐岗, 汤池, 董秀珍2010医疗卫生装备31 8]

    [17]

    Su H D, Guo G P, Ma Q Y, Tu J, Zhang D 2017 Chin. Phys. B 26 054302

    [18]

    Li K Q 2015 M. S. Dissertation (Nanjing:Nanjing University of Posts and Telecommunications) (in Chinese)[李凯强2015硕士学位论文(南京:南京邮电大学)]

    [19]

    Xu G X 2004 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[徐管鑫2004博士学位论文(重庆:重庆大学)]

    [20]

    Zhang L 2013 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese)[张丽2013博士学位论文(南京:南京理工大学)]

    [21]

    Curra F P, Mourad P D, Khokhlova V A, Crum L A 2000 IEEE Trans. Ultrason. Ferroelect. Freq. Control 47 1077

    [22]

    Soneson J E, Myers M R 2010 IEEE Trans. Ultrason. Ferroelect. Freq. Control 57 2450

    [23]

    Myers M R, Soneson J E 2009 J. Acoust. Soc. Amer. 126 425

    [24]

    Soneson J E, Myers M R 2007 J. Acoust. Soc. Amer. 122 2526

    [25]

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing:Nanjing University Press) pp292-305(in Chinese)[杜功焕, 朱哲民, 龚秀芬2012声学基础(南京:南京大学出版社)第292–305页]

    [26]

    Cheng J C 2013 Principles of Acoustics (Beijing:Science Press) pp571-576(in Chinese)[程建春2013声学原理(北京:科学出版社)第571–576页]

    [27]

    Wan M X, Zong J Y, Wang S P 2010 Biomedical Ultrasound (Beijing:Science Press) pp649-669(in Chinese)[万明习, 宗瑜瑾, 王素品2010生物医学超声学(北京:科学出版社)第649–669页]

    [28]

    Zhang D, Guo X S, Ma Q Y, Tu J 2014 Fundamentals of Medical Ultrasound (Beijing:Science Press) pp415-418(in Chinese)[章东, 郭霞生, 马青玉, 屠娟2014医学超声基础(北京:科学出版社)第415–418页]

    [29]

    Pennes H H 1948 J. Appl. Physiol. 1 93

    [30]

    Chen Z J, Zhou G L 2014 Inform. Commun. 4 36(in Chinese)[陈姝君, 周广丽2014信息通信4 36]

    [31]

    Chen Z J 2008 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese)[陈姝君2008博士学位论文(南京:南京理工大学)]

    [32]

    Li G Y 2011 M. S. Dissertation (Beijing:Beijing Jiaotong University) (in Chinese)[黎光宇2011硕士学位论文(北京:北京交通大学)]

    [33]

    Xu G Z, Li Y, Yang S, Wu H L, Zhang S, Zhang J J 2010 Biomedical Electrical Impedance Tomography (Beijing:Machinery Industry Press) pp33-34(in Chinese)[徐桂芝, 李颖, 杨硕, 吴焕丽, 张帅, 张剑军2010生物医学电阻抗成像技术(北京:机械工业出版社)第33–34页]

    [34]

    Lin M F 2014 M. S. Dissertation (Nanjing:Nanjing University of Posts and Telecommunications) (in Chinese)[林明锋2014硕士学位论文(南京:南京邮电大学)]

    [35]

    Zhang L 2014 Electr. Design Eng. 22 184(in Chinese)[张丽2014电子设计工程22 184]

    [36]

    Qin S L 2000 Computat. Phys. 17 314(in Chinese)[秦世伦2000计算物理17 314]

    [37]

    Ma H, Wang G 2009 COMSOL Multiphysics Basic Operation Guide and FAQ (Beijing:China Communications Press) (in Chinese)[马慧, 王刚2009 COMSOL Multiphysics基本操作指南和常见问题解答(北京:人民交通出版社)]

    [38]

    Hu B, Jiang L X, Huang Y 2006 Tech. Acoust. 25 613(in English)[胡兵, 姜立新, 黄瑛2006声学技术25 613]

    [39]

    Li G 2013 M. S. Dissertation (Tianjing:Tianjing University of Science and Technology) (in Chinese)[黎鸽2013硕士学位论文(天津:天津科技大学)]

    [40]

    Bessonova O, Wilkens V 2013 J. Acoust. Soc. Amer. 134 4213

    [41]

    Sun J M, Yu J, Guo X S, Zhang D 2013 Acta Phys. Sin. 62 054301 (in Chinese)[孙健明, 于洁, 郭霞生, 章东2013物理学报62 054301]

    [42]

    Chen T, Fan T, Zhang W, Qiu Y Y, Tu J, Guo X S, Zhang D 2014 J. Appl. Phys. 115 114902

    [43]

    Chen T 2014 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[陈涛2014博士学位论文(南京:南京大学)]

  • [1]

    Hutchinson L 2011 Nat. Rev. Clin. Oncol. 8 385

    [2]

    Kennedy J E 2005 Nat. Rev. Canc. 5 321

    [3]

    Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501 (in Chinese)[钱盛友, 王鸿樟2001物理学报50 501]

    [4]

    Gavrilov L R 2013 J. Acoust. Soc. Amer. 133 4348

    [5]

    Jiang L X, Hu B 2006 Tech. Acoust. 25 43(in Chinese)[姜立新, 胡兵2006声学技术25 43]

    [6]

    Shen J, Shen J L, Zou J Z 2007 J. Ultrasound Clin. Med. 9 486(in Chinese)[沈洁, 申俊玲, 邹建中2007临床超声医学杂志9 486]

    [7]

    Ye G, Smith P P, Noble J A 2010 Ultrasound Med. Biol. 36 234

    [8]

    Daniels M J, Varghese T, Madsen E L, Zagzebski J A 2007 Phys. Med. Biol. 52 4827

    [9]

    Fan T B, Zhang D, Zhang Z, Ma Y, Gong X F 2008 Chin. Phys. B 17 3372

    [10]

    Anand A, Kaczkowski P J 2004 J. Acoust. Soc. Amer. 115 2490

    [11]

    Ma Y, Zhang D, Gong X F, Liu X Z, Ma Q Y, Qiu Y Y 2007 Chin. Phys. 16 2745

    [12]

    Fan L Z, Luo F, Yu D Y, Liu X T, Zhang J, Xie M X 2005 Clin. J. Med. Instru. 29 115(in Chinese)[范良志, 罗飞, 喻道远, 刘夏天, 张静, 谢明星2005中国医疗器械杂志29 115]

    [13]

    Gabriel C, Peyman A, Grant E H 2009 Phys. Med. Biol. 54 4863

    [14]

    Zurbuchen U, Holmer C, Lehmann K S, Stein T, Roggan A, Seifarth C, Buhr H J, Ritz J P 2010 Int. J. Hyperthermia 26 26

    [15]

    Griffiths H, Ahmed A 1987 Clin. Phys. Physiol. Meas. 8 147

    [16]

    Cai H, You F S, Shi X T, Fu F, Liu R G, Tang C, Dong X Z 2010 Chin. Med. Equip. J. 31 8(in Chinese)[蔡华, 尤富生, 史学涛, 付峰, 刘锐岗, 汤池, 董秀珍2010医疗卫生装备31 8]

    [17]

    Su H D, Guo G P, Ma Q Y, Tu J, Zhang D 2017 Chin. Phys. B 26 054302

    [18]

    Li K Q 2015 M. S. Dissertation (Nanjing:Nanjing University of Posts and Telecommunications) (in Chinese)[李凯强2015硕士学位论文(南京:南京邮电大学)]

    [19]

    Xu G X 2004 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[徐管鑫2004博士学位论文(重庆:重庆大学)]

    [20]

    Zhang L 2013 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese)[张丽2013博士学位论文(南京:南京理工大学)]

    [21]

    Curra F P, Mourad P D, Khokhlova V A, Crum L A 2000 IEEE Trans. Ultrason. Ferroelect. Freq. Control 47 1077

    [22]

    Soneson J E, Myers M R 2010 IEEE Trans. Ultrason. Ferroelect. Freq. Control 57 2450

    [23]

    Myers M R, Soneson J E 2009 J. Acoust. Soc. Amer. 126 425

    [24]

    Soneson J E, Myers M R 2007 J. Acoust. Soc. Amer. 122 2526

    [25]

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing:Nanjing University Press) pp292-305(in Chinese)[杜功焕, 朱哲民, 龚秀芬2012声学基础(南京:南京大学出版社)第292–305页]

    [26]

    Cheng J C 2013 Principles of Acoustics (Beijing:Science Press) pp571-576(in Chinese)[程建春2013声学原理(北京:科学出版社)第571–576页]

    [27]

    Wan M X, Zong J Y, Wang S P 2010 Biomedical Ultrasound (Beijing:Science Press) pp649-669(in Chinese)[万明习, 宗瑜瑾, 王素品2010生物医学超声学(北京:科学出版社)第649–669页]

    [28]

    Zhang D, Guo X S, Ma Q Y, Tu J 2014 Fundamentals of Medical Ultrasound (Beijing:Science Press) pp415-418(in Chinese)[章东, 郭霞生, 马青玉, 屠娟2014医学超声基础(北京:科学出版社)第415–418页]

    [29]

    Pennes H H 1948 J. Appl. Physiol. 1 93

    [30]

    Chen Z J, Zhou G L 2014 Inform. Commun. 4 36(in Chinese)[陈姝君, 周广丽2014信息通信4 36]

    [31]

    Chen Z J 2008 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese)[陈姝君2008博士学位论文(南京:南京理工大学)]

    [32]

    Li G Y 2011 M. S. Dissertation (Beijing:Beijing Jiaotong University) (in Chinese)[黎光宇2011硕士学位论文(北京:北京交通大学)]

    [33]

    Xu G Z, Li Y, Yang S, Wu H L, Zhang S, Zhang J J 2010 Biomedical Electrical Impedance Tomography (Beijing:Machinery Industry Press) pp33-34(in Chinese)[徐桂芝, 李颖, 杨硕, 吴焕丽, 张帅, 张剑军2010生物医学电阻抗成像技术(北京:机械工业出版社)第33–34页]

    [34]

    Lin M F 2014 M. S. Dissertation (Nanjing:Nanjing University of Posts and Telecommunications) (in Chinese)[林明锋2014硕士学位论文(南京:南京邮电大学)]

    [35]

    Zhang L 2014 Electr. Design Eng. 22 184(in Chinese)[张丽2014电子设计工程22 184]

    [36]

    Qin S L 2000 Computat. Phys. 17 314(in Chinese)[秦世伦2000计算物理17 314]

    [37]

    Ma H, Wang G 2009 COMSOL Multiphysics Basic Operation Guide and FAQ (Beijing:China Communications Press) (in Chinese)[马慧, 王刚2009 COMSOL Multiphysics基本操作指南和常见问题解答(北京:人民交通出版社)]

    [38]

    Hu B, Jiang L X, Huang Y 2006 Tech. Acoust. 25 613(in English)[胡兵, 姜立新, 黄瑛2006声学技术25 613]

    [39]

    Li G 2013 M. S. Dissertation (Tianjing:Tianjing University of Science and Technology) (in Chinese)[黎鸽2013硕士学位论文(天津:天津科技大学)]

    [40]

    Bessonova O, Wilkens V 2013 J. Acoust. Soc. Amer. 134 4213

    [41]

    Sun J M, Yu J, Guo X S, Zhang D 2013 Acta Phys. Sin. 62 054301 (in Chinese)[孙健明, 于洁, 郭霞生, 章东2013物理学报62 054301]

    [42]

    Chen T, Fan T, Zhang W, Qiu Y Y, Tu J, Guo X S, Zhang D 2014 J. Appl. Phys. 115 114902

    [43]

    Chen T 2014 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[陈涛2014博士学位论文(南京:南京大学)]

  • [1] Luo Xiao-Fei, Wang Bo, Peng Kuan, Xiao Jia-Ying. Back-projection method with fast time-delay correction for photoacoustic tomography reconstruction based on a focused sound field model. Acta Physica Sinica, 2022, 71(7): 078102. doi: 10.7498/aps.71.20212019
    [2] Qian Jun, Xie Wei, Zhou Xiao-Wei, Tan Jian-Wen, Wang Zhi-Biao, Du Yong-Hong, Li Yan-Hao. Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal. Acta Physica Sinica, 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [3] Song Ren-Jie, Yuan Zi-Yan, Zhang Qi, Yu Jie, Xue Hong-Hui, Tu Juan, Zhang Dong. Method of spatiotemporally monitoring acoustic cavitation based on radio frequency signal entropy analysis. Acta Physica Sinica, 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [4] Liu Bei, Hu Wei-Peng, Zou Xiao, Ding Ya-Jun, Qian Sheng-You. Recognition of denatured biological tissue based on variational mode decomposition and multi-scale permutation entropy. Acta Physica Sinica, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [5] Shangguan Zi-Wei, Shen Yi, Li Peng, Ding Zhi-Hua. Wavenumber calibration and phase measurement in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [6] Pan Cong, Guo Li, Shen Yi, Yan Xue-Guo, Ding Zhi-Hua, Li Peng. Phase correction method based on interfacial signal in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [7] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [8] Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna. Acta Physica Sinica, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [9] Geng Hao, Fan Ting-Bo, Zhang Zhe, Tu Juan, Guo Xia-Sheng, Li Fa-Qi, Zhang Dong. Tissue lesion induced by a spherical cavity transducer. Acta Physica Sinica, 2014, 63(4): 044301. doi: 10.7498/aps.63.044301
    [10] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [11] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [12] Xu Feng, Lu Ming-Zhu, Wan Ming-Xi, Fang Fei. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [13] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [14] Liu Jun, Chen Xiao-Wei, Liu Jian-Sheng, Leng Yu-Xin, Zhu Yi, Dai Jun, Li Ru-Xin, Xu Zhi-Zhan. Properties of the propagation of negatively chirped femtosecond pulses in normally dispersive media. Acta Physica Sinica, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [15] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [16] Chen Xiao-Wei, Liu Jun, Zhu Yi, Leng Yu-Xin, Ge Xiao-Chun, Li Ru-Xin, Xu Zhi-Zhan. Self-compression of high-intensity femtosecond laser pulses in air. Acta Physica Sinica, 2005, 54(8): 3665-3669. doi: 10.7498/aps.54.3665
    [17] Chen Jian-Wen, Gao Hong-Yi, Zhu Hua-Feng, Xie Hong-Lan, Li Ru-Xin, Xu Zhi-Zhan. Neutron phase contrast tomographic imaging method. Acta Physica Sinica, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [18] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [19] XIANG JI-YING, WU ZHEN, ZENG SHAO-QUN, LUO QING-MING, ZHANG PING, HUANG DE-XIU. ANALYSIS OF 3D TRANSFER FUNCTIONS OF OPTICAL COHERENCE TOMOGRAPHY. Acta Physica Sinica, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
    [20] XU ZHENG-YI, ZHANG AN-DONG, XU GANG, YANG HUA-GUANG, LI YIN-YUAN. QUASI-ELASTIC STRONG LIGHT SCATTERING IN α-LiIO3 SINGLE CRYSTALS INDUCED BY IONIC TRANSPORTATION. Acta Physica Sinica, 1982, 31(5): 615-622. doi: 10.7498/aps.31.615
Metrics
  • Abstract views:  5333
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2017
  • Accepted Date:  07 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回