Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of the motion of spherical microparticle induced by a collapsed microbubble

Wei Meng-Ju Chen Li Wu Tao Zhang Hong-Yan Cui Hai-Hang

Citation:

Mechanism of the motion of spherical microparticle induced by a collapsed microbubble

Wei Meng-Ju, Chen Li, Wu Tao, Zhang Hong-Yan, Cui Hai-Hang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Collapse of a confined bubble is the core problem of bubble dynamics. The recent study has shown that the collapse of macroscopic bubble may drive the motion of suspended particle with the similar size, but, there has still been a lack of the relevant study on a microscale. In the experiment about the bubble driven micro-motor, the locomotion of motor pushed by microjetting has been noticed. However, due to the limitation of experimental conditions, it is difficult to reveal the details of propulsion mechanism. In this paper, the volume of fluid based numerical method is adopted to simulate the interaction process between a collapsing microbubble and the suspended particle nearby. The spatial distribution and the time evolution of flow field are obtained, and the velocity that the micromotor could be achieved is deduced by integrating the impulsive force. The results show that when the bubble size is fixed, the interaction force is inversely proportional to the size of microparticle and the gap between microparticle and bubble. The Kelvin impulse theorem is used to clarify the difference between the interaction on a macroscopic scale and that on a microscopic scale. This study not only extends the scope of cavitation dynamics, which reveals the characteristics of interaction between bubble and particle on a microscale, but also is significant for improving the efficiency of self-propelled micro-motor.
      Corresponding author: Cui Hai-Hang, cuihaihang@xauat.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Emergency Management Projects (Grant No. 11447133), the National Natural Science Foundation of China for Young (Grant No. 11602187), the Natural Science Foundation of Shaanxi Province for Youth Talent Project, China (Grant No. 2016JQ1008), Special Research Project of Shanxi Educational Committee, China (Grant No. 15JK1385), and the Project from State Key Laboratory of Building Science and Technology in Western China.
    [1]

    Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]

    [2]

    Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]

    [3]

    Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197

    [4]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [5]

    Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904

    [6]

    G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]

    [7]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]

    [8]

    Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395

    [9]

    Didenko Y T, Suslick K S 2002 Nature 418 394

    [10]

    Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501

    [11]

    Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333

    [12]

    Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501

    [13]

    Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157

    [14]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305

    [15]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016物理学报65 220201]

    [16]

    Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]

    [17]

    Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]

    [18]

    Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]

    [19]

    Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]

    [20]

    Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34

    [21]

    Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909

    [22]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283

    [23]

    Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156

  • [1]

    Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]

    [2]

    Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]

    [3]

    Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197

    [4]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [5]

    Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904

    [6]

    G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]

    [7]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]

    [8]

    Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395

    [9]

    Didenko Y T, Suslick K S 2002 Nature 418 394

    [10]

    Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501

    [11]

    Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333

    [12]

    Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501

    [13]

    Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157

    [14]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305

    [15]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016物理学报65 220201]

    [16]

    Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]

    [17]

    Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]

    [18]

    Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]

    [19]

    Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]

    [20]

    Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34

    [21]

    Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909

    [22]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283

    [23]

    Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156

  • [1] Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun. Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel. Acta Physica Sinica, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] Wang Li-Na, Chen Li, Sheng Min-Jia, Wang Lei-Lei, Cui Hai-Hang, Zheng Xu, Huang Ming-Hua. Interface evolution mechanism of dual-bubble coalescence driving micromotors in bulk phase. Acta Physica Sinica, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [3] Li Chang-Liang, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Yang Yi-Biao, Fei Hong-Ming, Sun Fei, Liu Yi-Chao. Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model. Acta Physica Sinica, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [4] Ye Xin, Shan Yan-Guang. Numerical simulation of modal evolution and flow field structure of vibrating droplets on hydrophobic surface. Acta Physica Sinica, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [5] Yu Wei, Deng Zi-Long, Wu Su-Chen, Yu Cheng, Wang Chao. Hydrodynamics of double emulsion passing through a microfuidic Y-junction. Acta Physica Sinica, 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [6] Zhao Zhang-Feng, Zhang Wen-Jun, Niu Li-Li, Meng Long, Zheng Hai-Rong. Microbubble oscillation induced acoustic micromixing in microfluidic device. Acta Physica Sinica, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [7] Wang Zuo, Liu Yan, Zhang Jia-Zhong. Simulation of micro flow in the transition regime using effective-viscosity-based multi-relaxation-time lattice Boltzmann model. Acta Physica Sinica, 2016, 65(1): 014703. doi: 10.7498/aps.65.014703
    [8] Tang Wan-Ting, Xiao Shi-Fang, Sun Xue-Gui, Hu Wang-Yu, Deng Hui-Qiu. The flow behavior of liquid Li in Cu micro-channels. Acta Physica Sinica, 2016, 65(10): 104705. doi: 10.7498/aps.65.104705
    [9] Duan Juan, Chen Yao-Qin, Zhu Qing-Yong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser. Acta Physica Sinica, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [10] Jiang Yu-Ting, Qi Hai-Tao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel. Acta Physica Sinica, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [11] Wang Bao, Wang Jia-Dao, Chen Da-Rong. Drag reduction on hydrophobic transverse grooved surface by underwater gas formed naturally. Acta Physica Sinica, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [12] Yan Han, Zhang Wen-Ming, Hu Kai-Ming, Liu Yan, Meng Guang. Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physica Sinica, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [13] Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates. Acta Physica Sinica, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [14] Hu Hai-Bao, Bao Lu-Yao, Huang Su-He. Simulation studies on fluid density distribution of micro-flows in a nano-channel. Acta Physica Sinica, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [15] Li Bei-Bei, Zhang Hong-Chao, Han Bing, Chen Jun, Ni Xiao-Wu, Lu Jian. Investigation of the collapse of laser-induced bubble near a cone boundary. Acta Physica Sinica, 2012, 61(17): 174210. doi: 10.7498/aps.61.174210
    [16] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] Ren Ming-Xing, Li Bang-Sheng, Yang Chuang, Fu Heng-Zhi. Simulation research on the law of flow of liquid metal in micro-channels. Acta Physica Sinica, 2008, 57(8): 5063-5071. doi: 10.7498/aps.57.5063
    [18] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] Ding Ying-Tao, He Feng, Yao Zhao-Hui, Shen Meng-Yu, Wang Xue-Fang. Sub-choking phenomenon of low-speed gas flow in a long-constant-area microchannel. Acta Physica Sinica, 2004, 53(8): 2429-2433. doi: 10.7498/aps.53.2429
    [20] YI CHUAN-YUAN, JIANG CHENG-HUA, WANG HUA-QIN. STUDY OF DOMAIN VOLUME IN POLYURETHANE IONOMER. Acta Physica Sinica, 1988, 37(9): 1522-1526. doi: 10.7498/aps.37.1522
Metrics
  • Abstract views:  4642
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2017
  • Accepted Date:  02 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回