Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural and electronic properties of T-graphene and its derivatives

Liu Hui-Ying Zhang Xiu-Qin Fang Yi-Mei Zhu Zi-Zhong

Citation:

Structural and electronic properties of T-graphene and its derivatives

Liu Hui-Ying, Zhang Xiu-Qin, Fang Yi-Mei, Zhu Zi-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recent years there has been aroused a growing interest in designing two-dimensional (2D) structures of carbon allotropes, owing to the great success in graphene. The T-graphene is a newly proposed 2D carbon allotrope possessing tetragonal symmetry other than hexagonal symmetry of graphene. Also, the energetic and dynamical stabilities of T-graphene have been revealed. So motivated, we investigate the structural stabilities and electronic properties of T-graphene and especially its derivatives-n(n=1-5) by using the first-principle calculation based on the density function theory. By changing the atomic number (n) of the linear carbon chains connecting the two tetragon rings of T-graphene, a series of sp-sp2 hybrid structures can be formed, which is named T-graphene derivatives-n. The calculation results show that the structural stabilities, chemical bond types and electronic structures of these materials depend greatly on the parity of n. Owing to a strong π-bond formed by eight carbon atoms in T-graphene, it becomes the one with the lowest energy in all these materials studied in this work. An interesting phenomenon is found that the T-graphene derivatives-n with even n are dynamically stable as witnessed by the calculated phonon spectra without imaginary modes, while those with odd n are dynamically unstable. The metallic behaviors are present in the T-graphene derivatives-n with even carbon atoms in the linear carbon chains, showing an alternating single and triple C–C bonds. Besides, we observe that the metallicity of the T-graphene derivatives-n with even n becomes stronger as n increases. On the other hand, the linear carbon chains with odd carbon atoms are comprised of continuous C=C double bonds. These T-graphene derivatives-n with odd n also show metallic behaviors, but turn into magnetic materials (except for n=1), the magnetic moments are about 0.961μB (n=3) and 0.863μB (n=5) respectively, and ferromagnetic ordering is the only possibility for the magnetism, which rarely occurs in carbon material. Our first-principle studies indicate that the introducing carbon chains between the tetragonal carbon rings of T-graphene constitute an efficient method to obtain new two-dimensional carbon allotrope. With different numbers (even or odd) of carbon atoms on the chains, the constructed 2D carbon allotropes could show contrasting dynamical and magnetic properties. These findings provide a theoretical basis for designing two-dimensional carbon materials and carbon-based nanoelectronic devices.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National key Research and Development Program, China (Grant No. 2016YFA0202601), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11605073), and the Scientific Research Foundation of the Education Department of Fujian Province, China (Grant No. JAT160690).
    [1]

    Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Pendry J B 2007 Science 315 1226

    [6]

    Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427

    [7]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [8]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436

    [9]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403

    [10]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [11]

    Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289

    [12]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [13]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804

    [14]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [15]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [16]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [17]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [18]

    Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016物理学报13 133101]

    [19]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [20]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [21]

    Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959

    [22]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505

    [23]

    Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304

    [24]

    Majidi R 2015 Physica E 74 371

    [25]

    Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704

    [26]

    Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004

    [27]

    Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

  • [1]

    Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Pendry J B 2007 Science 315 1226

    [6]

    Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427

    [7]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [8]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436

    [9]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403

    [10]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [11]

    Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289

    [12]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [13]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804

    [14]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [15]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [16]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [17]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [18]

    Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016物理学报13 133101]

    [19]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [20]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [21]

    Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959

    [22]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505

    [23]

    Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304

    [24]

    Majidi R 2015 Physica E 74 371

    [25]

    Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704

    [26]

    Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004

    [27]

    Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

  • [1] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi. First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1). Acta Physica Sinica, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] Li Lin, Sun Yu-Xuan, Sun Wei-Feng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides. Acta Physica Sinica, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [8] Chi Ming-He, Zhao Lei. First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Acta Physica Sinica, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [10] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [11] Wu Jiang-Bin, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Electronic structure of twisted bilayer graphene. Acta Physica Sinica, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [12] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. Influence of doped rare earth elements on the dehydrogenation properties of VH2. Acta Physica Sinica, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [13] Gao Tan-Hua, Liu Hui-Ying, Zhang Peng, Wu Shun-Qing, Yang Yong, Zhu Zi-Zhong. Structural and electronic properties of Al-doped spinel LiMn2O4. Acta Physica Sinica, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [14] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] Jin Zi-Fei, Tong Guo-Ping, Jiang Yong-Jin. Effect of the non-nearest-neighbor hopping on the electronic structure of armchair graphene nanoribbons. Acta Physica Sinica, 2009, 58(12): 8537-8543. doi: 10.7498/aps.58.8537
    [16] Liu Qiang, Cheng Xin-Lu, Fan Yong-Heng, Yang Xiang-Dong. First-principles calculation of p-Zn1-xMgxO electronic structure by doping with Al and N. Acta Physica Sinica, 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [17] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] Wang Song-You, Duan Guo-Yu, Qiu Jian-Hong, Jia Yu, Chen Liang-Yao. PtN in zinc-blende structure: An unstable metallic transition-metal nitride compound. Acta Physica Sinica, 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [19] Meng Xing, Xu Xiao-Guang, Liu Wei, Sun Yuan, Chen Gang. First-principles investigation of charge disproportionation in HoNiO_3 perovskite. Acta Physica Sinica, 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [20] Liu Hui-Ying, Hou Zhu-Feng, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. First-principles calculation on the formation energies oflithium insertion in In Sb. Acta Physica Sinica, 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
Metrics
  • Abstract views:  6138
  • PDF Downloads:  297
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2017
  • Accepted Date:  06 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回