Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of electrical explosion of single wire in a vacuum and in the air

Wang Kun Shi Zong-Qian Shi Yuan-Jie Zhao Zhi-Gang Zhang Dong

Citation:

Characteristics of electrical explosion of single wire in a vacuum and in the air

Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Zhao Zhi-Gang, Zhang Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The characteristics of the electrical explosion of aluminum wire in a vacuum and in the air are investigated.The process of energy deposition is derived from the typical voltage and current waveforms.The energy deposited into the aluminum wire at the instant of voltage breakdown is very important for estimating the state of the metal wire.Energy of~2.8 eV/atom is deposited into the aluminum wire in a vacuum at the instant of voltage breakdown.However,the current flowing through the load for the electrical explosion of aluminum wire in the air decreases to zero gradually after the onset of the phase explosion,coming into the dwell stage.Energy of about 6 eV/atom is deposited into the wire at the instant of voltage breakdown for exploding aluminum wire in the air.Temperatures of 0.9 eV and 0.4 eV are estimated for exploding aluminum wires in a vacuum and in the air according to the experimental data combined with the transport coefficient model.The dwell stage is a significant feature for exploding aluminum wires in the air.The dependence of the dwell time on the initial charging voltage of the primary energy-storage capacitor is derived.The dwell time decreases from 95 ns to 17 ns with the increase of the initial voltage from 13 kV to 17 kV.The optical diagnostic equipment with high spatial and temporal resolution is constructed by a 532 nm,30 ps laser probe.The shadowgram demonstrates the expansion trajectories of the high-density products in different media.The expansion velocities of the high-density core for exploding aluminum wire in a vacuum and in the air are 1.9 km/s and 3 km/s,respectively.The energy deposition into the aluminum wire near the electrode region is slightly higher than in the middle region due to the polarity effect, which is analyzed by the distribution of the radial electric field on the wire surface.Because the explosive emission of the electrons is suppressed substantially by the air,the structure of the energy deposition for exploding aluminum wire in the air is more homogeneous.The structures of the energy deposition and the expansion trajectory of the shock wave are analyzed.The schlieren diagnostic is used to translate the exploding products with different refractivities.The schlieren images for exploding aluminum wire in a vacuum show that the metal wire is exploded into two-phase structure,i.e.,the low-density high-temperature corona plasma surrounding the high-density low-temperature core.However,the schlieren images for exploding aluminum wire in the air demonstrate that in addition to the core-corona structure,the channels of shock wave and compressed air layer are formed.The expansion trajectory of the shockwave front is derived according to the optical diagnostics.
      Corresponding author: Shi Zong-Qian, zqshi@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705) and the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Hebei, China (Grant No. BJ2017038).
    [1]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [2]

    Clérouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [3]

    Zhang Y M, Qiu A C, Zhou H B, Liu Q Y, Tang J P, Liu M J 2016 High Voltage Eng. 42 1009(in Chinese)[张永民, 邱爱慈, 周海滨, 刘巧珏, 汤俊萍, 刘美娟2016高电压技术 42 1009]

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Sarkisov G S, Rosenthal S E, Cochrane K W, Struve K, Deeney C, McDaniel D 2005 Phys. Rev. E 71 046404

    [6]

    Shi Z Q, Shi Y J, Wang K, Jia S L 2016 Phys. Plasmas 23 032707

    [7]

    Duselis P U, Kusse B R 2003 Phys. Plasmas 10 565

    [8]

    Shi Z Q, Wang K, Shi Y J, Wu J, Han R Y 2015 J. Appl. Phys. 118 243302

    [9]

    Sarkisov G S, Sasorov P, Struve K, McDaniel D, Gribov A, Oleinik G 2002 Phys. Rev. E 66 046413

    [10]

    Wang K 2017 Phys. Plasmas 24 022702

    [11]

    Li Y, Sheng L, Wu J, Li X, Zhao J, Zhang M, Yuan Y, Peng B 2014 Phys. Plasmas 21 102513

    [12]

    Shi Y J, Shi Z Q, Wang K, Wu Z Q, Jia S L 2017 Phys. Plasmas 24 012706

    [13]

    Beilis I I, Baksht B R, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [14]

    Shi H T, Zou X B, Wang X X 2016 Appl. Phys. Lett. 109 134105

    [15]

    Wu J, Li X W, Wang K, Li Z, Yang Z, Shi Q Z, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [16]

    Wang K, Shi Z Q, Shi Y J, Bai J, Li Y, Wu Z Q, Qiu A C, Jia S L 2016 Acta Phys. Sin. 65 015203(in Chinese)[王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利2016物理学报 65 015203]

    [17]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [18]

    Tkachenkon S I, Gasilov V, Ol'khovskaya O 2011 Math. Models Comput. Simul. 3 575

    [19]

    Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph 9

    [20]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [21]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

  • [1]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [2]

    Clérouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [3]

    Zhang Y M, Qiu A C, Zhou H B, Liu Q Y, Tang J P, Liu M J 2016 High Voltage Eng. 42 1009(in Chinese)[张永民, 邱爱慈, 周海滨, 刘巧珏, 汤俊萍, 刘美娟2016高电压技术 42 1009]

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Sarkisov G S, Rosenthal S E, Cochrane K W, Struve K, Deeney C, McDaniel D 2005 Phys. Rev. E 71 046404

    [6]

    Shi Z Q, Shi Y J, Wang K, Jia S L 2016 Phys. Plasmas 23 032707

    [7]

    Duselis P U, Kusse B R 2003 Phys. Plasmas 10 565

    [8]

    Shi Z Q, Wang K, Shi Y J, Wu J, Han R Y 2015 J. Appl. Phys. 118 243302

    [9]

    Sarkisov G S, Sasorov P, Struve K, McDaniel D, Gribov A, Oleinik G 2002 Phys. Rev. E 66 046413

    [10]

    Wang K 2017 Phys. Plasmas 24 022702

    [11]

    Li Y, Sheng L, Wu J, Li X, Zhao J, Zhang M, Yuan Y, Peng B 2014 Phys. Plasmas 21 102513

    [12]

    Shi Y J, Shi Z Q, Wang K, Wu Z Q, Jia S L 2017 Phys. Plasmas 24 012706

    [13]

    Beilis I I, Baksht B R, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [14]

    Shi H T, Zou X B, Wang X X 2016 Appl. Phys. Lett. 109 134105

    [15]

    Wu J, Li X W, Wang K, Li Z, Yang Z, Shi Q Z, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [16]

    Wang K, Shi Z Q, Shi Y J, Bai J, Li Y, Wu Z Q, Qiu A C, Jia S L 2016 Acta Phys. Sin. 65 015203(in Chinese)[王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利2016物理学报 65 015203]

    [17]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [18]

    Tkachenkon S I, Gasilov V, Ol'khovskaya O 2011 Math. Models Comput. Simul. 3 575

    [19]

    Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph 9

    [20]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [21]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

  • [1] Li Chen, Han Ruo-Yu, Liu Yi, Zhang Chen-Yang, Ouyang Ji-Ting, Ding Wei-Dong. Comparison of electrical wire explosion characteristics of single wire and wire array in air. Acta Physica Sinica, 2020, 69(7): 075203. doi: 10.7498/aps.69.20191797
    [2] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [4] Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Bai Jun, Li Yang, Wu Zi-Qian, Qiu Ai-Ci, Jia Shen-Li. Experimental investigation on the electrical explosion of single aluminum wire in vacuum. Acta Physica Sinica, 2016, 65(1): 015203. doi: 10.7498/aps.65.015203
    [5] Zhao Shen, Zhu Xin-Lei, Shi Huan-Tong, Zou Xiao-Bing, Wang Xin-Xin. Axial backlighting of two-wire Z-pinch using an X-pinch as an X-ray source. Acta Physica Sinica, 2015, 64(1): 015203. doi: 10.7498/aps.64.015203
    [6] Sheng Liang, Li Yang, Yuan Yuan, Peng Bo-Dong, Li Mo, Zhang Mei, Zhao Ji-Zhen, Wei Fu-Li, Wang Liang-Ping, Hei Dong-Wei, Qiu Ai-Ci. Experimental study of insulated aluminum planar wire array Z pinches. Acta Physica Sinica, 2014, 63(5): 055201. doi: 10.7498/aps.63.055201
    [7] Sheng Liang, Peng Bo-Dong, Yuan Yuan, Zhang Mei, Li Kui-Nian, Zhang Xin-Jun, Zhao Chen, Zhao Ji-Zhen, Li Mo, Wang Pei-Wei, Li Yang. Laser shadowgraphy diagnostics for insulated-ordinary mixed planar wire array Z pinches. Acta Physica Sinica, 2014, 63(23): 235205. doi: 10.7498/aps.63.235205
    [8] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] Ye Fan, Xue Fei-Biao, Chu Yan-Yun, Si Fen-Ni, Hu Qing-Yuan, Ning Jia-Min, Zhou Lin, Yang Jian-Lun, Xu Rong-Kun, Li Zheng-Hong, Xu Ze-Ping. Experimental study on current division of nested wire array Z pinches. Acta Physica Sinica, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [10] Zhou Shao-Tong, Li Jun, Huang Xian-Bin, Cai Hong-Chun, Zhang Si-Qun, Li Jing, Duan Shu-Chao, Zhou Rong-Guo. Experimental investigation of radiation charactristics of Ti wire X-pinch X-ray source on Yang accelerator. Acta Physica Sinica, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [11] Meng Shi-Jian, Li Zheng-Hong, Qin Yi, Ye Fan, Xu Rong-Kun. X-ray continuum spectra for diagnosing plasma temperaturein aluminum wire array Z-pinches. Acta Physica Sinica, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [12] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [13] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [14] Wang Liang-Ping, Han Juan-Juan, Wu Jian, Guo Ning, Wu Gang, Li Yan, Qiu Ai-Ci. Simulation of planar wire array Z-pinch based on single wire behavior. Acta Physica Sinica, 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [15] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [16] Wu Gang, Qiu Ai-Ci, Lü Min, Kuai Bin, Wang Liang-Ping, Cong Pei-Tian, Qiu Meng-Tong, Lei Tian-Shi, Sun Tie-Ping, Guo Ning, Han Juan-Juan, Zhang Xin-Jun, Huang Tao, Zhang Guo-Wei, Qiao Kai-Lai. Experimental study on K-shell radiation production of aluminum wire array Z-pinch at Qiangguang-I facility. Acta Physica Sinica, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [17] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [18] Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch. Acta Physica Sinica, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [19] Ning Cheng, Li Zheng-Hong, Hua Xin-Sheng, Xu Rong-Kun, Peng Xian-Jue, Xu Ze-Ping, Yang Jian-Lun, Guo Cun, Jiang Shi-Lun, Feng Shu-Ping, Yang Li-Bing, Yan Cheng-Li, Song Feng-Jun, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten. Acta Physica Sinica, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] LI YU-TONG, ZHANG JIE, CHEN LI-MING, XIA JIANG-FAN, TENG HAO, WEI ZHI-YI, JIANG WEN-MIAN. OBSERVATION OF THE TRANSVERSE PINCH OF THE EXPANSION OF AN FEMTOSECOND LASER-PLA SMA. Acta Physica Sinica, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
Metrics
  • Abstract views:  5868
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2017
  • Accepted Date:  24 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回