Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entropy forces of nanoparticles in self-propelled systems

Hua Yun-Feng Zhang Lin-Xi

Citation:

Entropy forces of nanoparticles in self-propelled systems

Hua Yun-Feng, Zhang Lin-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Entropy force is fairly ubiquitous in nature, but it is not practically beneficial for most cases, thus how to reduce the entropic force of the system is very important. In this paper, by employing the overdamped Langevin dynamics simulations, we explore the entropy force between two large nanoparticles (or two nanorods) immersed in a self-propelled system. Self-propelled particles can be regarded as active matter, and the active matter is an interesting subject which has been studied theoretically and experimentally over the past few years. A great many biological and physical systems can be referred to as active matter systems, including molecular motors, swimming bacteria, self-propelled colloids, motile cells, and macroscopic animals. Active matter obtains energy from an external system under non-equilibrium conditions, and active particles with suitably designed constructions are able to convert energy input into the desired control of function, which has wide potential applications in a diversity of fields, such as drug delivery in medicine. Self-propelled particles without angular velocity would gather around the nanoparticles (or nanorods) under the effect of entropy force, which can induce large entropy force between nanoparticles. The interaction force between two nanoparticles is large enough, owing to the asymmetry of the system, and entropy force also depends on the distance between two nanoparticles (or two nanorods). For the case of self-propelled particles with an angular velocity, the entropic effect is weak, and the larger the angular velocity, the weaker the entropic force is. Moreover, nanoparticles will no longer assemble together because of their weak entropic forces. Meanwhile, the entropy force between two nanorods can be tuned from a long repulsion into a long range attraction by changing the distance between two nanorods. The present investigation can help us understand the entropy forces in non-equilibrium systems.
      Corresponding author: Zhang Lin-Xi, lxzhang@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21374102, 21674096).
    [1]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [2]

    Joanny J F, Leibler L, de Gennes P G 1979 J. Polym. Sci. Part B:Polym. Phys. 17 1073

    [3]

    Jiang Y W, Zhang D, He L L, Zhang L X 2016 J. Phys. Chem. B 120 572

    [4]

    David G R, Guevorkian K, Douezan S 2012 Science 338 910

    [5]

    Fily Y S, Henkes S, Marchetti M C 2014 Soft Matter 10 2132

    [6]

    Zhao B, Qi N, Zhang D S 2017 Mat. Rev. 31 1A

    [7]

    Ford R M, Harvet R W 2007 Adv. Mater. Res. 30 1608

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters M 2012 Soft Matter 8 5175

    [9]

    Hagen B T, Teeffelen S V, Lwen H 2011 J. Phys. Condens. Matter 23 194119

    [10]

    Leonardo R D, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte M, Mecarini F, Angelis F D, Fabrizio E D 2010 Proc. Natl. Acad. Sci. USA 107 9541

    [11]

    Ai B Q 2016 Sci. Rep. 6 18740

    [12]

    Kaiser A, Peshkov A, Sokolov A 2014 Phys. Rev. Lett. 112 158101

    [13]

    Pototsky A, Hahn A M, Stark H 2013 Phys. Rev. E 87 042124

    [14]

    Potiguar F Q, Farias G A, Ferreira W P https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0123072014 Phys. Rev. E 90 012307

    [15]

    Koumakis N, Maggi C, Leonardo R D 2014 Soft Matter 10 5695

    [16]

    Ai B Q, Zhu W J, He Y F, Zhong W R 2016 J. Stat. Mech. 17 023501

    [17]

    Wensink H, Dunkel J, Heidenreich S, Drescher K, Goldstein R, Lwen H, Yeomans J 2012 Proc. Natl. Acad. Sci. USA 109 14308

    [18]

    Cai J H, Wei X X, Fan A 2016 Polym. Bull. 4 17

    [19]

    Ran N, Martien A C S, Peter G B 2015 Phys. Rev. Lett. 114 018302

    [20]

    Hooper J B, Schweizer K S 2006 Macromolecules 39 5133

    [21]

    Harder J, Mallory S A, Tung C, Valerian C, Cacciuto A 2014 J. Chem. Phys. 141 194901

    [22]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101

    [23]

    Friedrich B M, Julicher F 2009 Phys. Rev. Lett. 103 068102

    [24]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659

    [25]

    Kummel F, ten Hagen B, Wittkowski R, Buttinoni I, Volpe G, Lwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302

    [26]

    Yamchi M Z, Naji A 2017 arXiv:1704.07262

    [27]

    Hasnain J, Menzl G, Jungblut S, Dellago C 2017 Soft Matter 13 930

  • [1]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [2]

    Joanny J F, Leibler L, de Gennes P G 1979 J. Polym. Sci. Part B:Polym. Phys. 17 1073

    [3]

    Jiang Y W, Zhang D, He L L, Zhang L X 2016 J. Phys. Chem. B 120 572

    [4]

    David G R, Guevorkian K, Douezan S 2012 Science 338 910

    [5]

    Fily Y S, Henkes S, Marchetti M C 2014 Soft Matter 10 2132

    [6]

    Zhao B, Qi N, Zhang D S 2017 Mat. Rev. 31 1A

    [7]

    Ford R M, Harvet R W 2007 Adv. Mater. Res. 30 1608

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters M 2012 Soft Matter 8 5175

    [9]

    Hagen B T, Teeffelen S V, Lwen H 2011 J. Phys. Condens. Matter 23 194119

    [10]

    Leonardo R D, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte M, Mecarini F, Angelis F D, Fabrizio E D 2010 Proc. Natl. Acad. Sci. USA 107 9541

    [11]

    Ai B Q 2016 Sci. Rep. 6 18740

    [12]

    Kaiser A, Peshkov A, Sokolov A 2014 Phys. Rev. Lett. 112 158101

    [13]

    Pototsky A, Hahn A M, Stark H 2013 Phys. Rev. E 87 042124

    [14]

    Potiguar F Q, Farias G A, Ferreira W P https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0123072014 Phys. Rev. E 90 012307

    [15]

    Koumakis N, Maggi C, Leonardo R D 2014 Soft Matter 10 5695

    [16]

    Ai B Q, Zhu W J, He Y F, Zhong W R 2016 J. Stat. Mech. 17 023501

    [17]

    Wensink H, Dunkel J, Heidenreich S, Drescher K, Goldstein R, Lwen H, Yeomans J 2012 Proc. Natl. Acad. Sci. USA 109 14308

    [18]

    Cai J H, Wei X X, Fan A 2016 Polym. Bull. 4 17

    [19]

    Ran N, Martien A C S, Peter G B 2015 Phys. Rev. Lett. 114 018302

    [20]

    Hooper J B, Schweizer K S 2006 Macromolecules 39 5133

    [21]

    Harder J, Mallory S A, Tung C, Valerian C, Cacciuto A 2014 J. Chem. Phys. 141 194901

    [22]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101

    [23]

    Friedrich B M, Julicher F 2009 Phys. Rev. Lett. 103 068102

    [24]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659

    [25]

    Kummel F, ten Hagen B, Wittkowski R, Buttinoni I, Volpe G, Lwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302

    [26]

    Yamchi M Z, Naji A 2017 arXiv:1704.07262

    [27]

    Hasnain J, Menzl G, Jungblut S, Dellago C 2017 Soft Matter 13 930

Metrics
  • Abstract views:  5780
  • PDF Downloads:  284
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2017
  • Accepted Date:  13 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回