Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of the fine structure of cesium Rydberg state

Pei Dong-Liang He Jun Wang Jie-Ying Wang Jia-Chao Wang Jun-Min

Citation:

Measurement of the fine structure of cesium Rydberg state

Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spectra of Rydberg atoms are of great significance for studying the energy levels of Rydberg atoms and the interaction between neutral atoms, especially, the high-precision spectra of Rydberg atoms can be used to measure the energy level shifts of Rydberg atoms resulting from the dipole-dipole interactions in room-temperature vapor cells. In this paper we report the preparation of cesium Rydberg states based on the cascaded two-photon excitation of 509 nm laser and 852 nm laser in opposite, and the measurements of the fine structure of cesium Rydberg states. In this experiment, the 509 nm laser is generated by the cavity-enhanced second-harmonic generation from 1018 nm laser with a periodically-poled KTP crystal and has a maximum power of about 1 W, and the 852 nm probe laser is provided by an external-cavity diode laser with a maximum output power of 5 mW and a typical linewidth of 1 MHz. By scanning the frequency of 509 nm coupling laser, it is presented that the Doppler-free spectra based on electromagnetically-induced transparency (EIT) of 509 nm coupling laser and 852 nm probe laser. The velocity-selective EIT spectra are used to study the spectral splitting of 6S1/26P3/257S(D) ladder-type system of cesium Rydberg atoms in a room-temperature vapor cell. The powers of 852 nm probe laser and 509 nm coupling laser are 0.3 upW and 200 mW, respectively. Their waist radii are both approximately 50 m. The intervals of hyperfine splitting of the intermediate state 6P3/2(F'=3, 4, 5) and fine splitting of 57D3/2 and 57D5/2 Rydberg states are measured by a frequency calibrating. Concretely, the velocity-selective spectrum with a radio frequency (RF) modulation of 30 MHz is used as a reference to calibrate the Rydberg fine-structure states in the hot vapor cell, where the RF frequency precision is smaller than a hertz on long time scales and the EIT linewidth is smaller than 13 MHz. The experimental value of the fine structure splitting of 57D3/2 and 57D5/2 Rydberg states is (354.72.5) MHz, that is in consistence with the value of 346.8 MHz calculated by Rydberg-Ritz equation and quantum defects of 57D3/2 and 57D5/2 Rydberg states. The experimental values of hyperfine splitting of intermediate state 6P3/2(F'=3, 4, 5) are also coincident with the theoretical calculated values. The dominant discrepancy existing between the experimental and calculated results may arise from the nonlinear correspondence of the PZT while the 509 nm wavelength cavity is scanned, and the measurement accuracy influenced by the spectral linewidth. The velocity-selective spectroscopy technique can also be used to measure the energy level shifts caused by the interactions of Rydberg atoms.
      Corresponding author: He Jun, hejun@sxu.edu.cn;wwjjmm@sxu.edu.cn ; Wang Jun-Min, hejun@sxu.edu.cn;wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61475091, 61227902), the National Key Research and Development Program of China (Grant No. 2017YFA0304502), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2017101).
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1

    [2]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [3]

    Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [4]

    Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [5]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [6]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [7]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [8]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [9]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [10]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [11]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [12]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [14]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6

    [15]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [16]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858

    [17]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [18]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959

    [19]

    Fano U 1961 Phys. Rev. 124 1866

    [20]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [21]

    Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112

    [22]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001

    [23]

    Xu W, DeMarco B 2016 Phys. Rev. A 93 011801

    [24]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822

    [25]

    Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650

    [28]

    Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733

  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1

    [2]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [3]

    Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [4]

    Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [5]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [6]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [7]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [8]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [9]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [10]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [11]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [12]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [14]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6

    [15]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [16]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858

    [17]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [18]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959

    [19]

    Fano U 1961 Phys. Rev. 124 1866

    [20]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [21]

    Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112

    [22]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001

    [23]

    Xu W, DeMarco B 2016 Phys. Rev. A 93 011801

    [24]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822

    [25]

    Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650

    [28]

    Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733

  • [1] Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li. Metastable dynamics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240233
    [2] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua. Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules. Acta Physica Sinica, 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [4] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming. Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [5] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [6] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [7] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [8] Tan Xiao-Ming, Zhao Gang, Zhang Di. Effects of fine structure of absorption spectrum and spin-singlet on zero-field-splitting parameters for BaCrSi4O10 and AgGaSe2:Cr2+. Acta Physica Sinica, 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [9] Chen Sun, Zhu Yun-Xia, Ge Zi-Ming, He Li-Ming. MBPT calculation for the fine-structure intervals of principal series np(n=39) for Na. Acta Physica Sinica, 2012, 61(15): 153104. doi: 10.7498/aps.61.153104
    [10] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [11] Sun Yan, Gou Bing-Cong, Zhu Jing-Jing. Energies, fine structures, and Auger widths of the high-lying triply excited states of 2S(m) and 2D(m) (m=2—7) for the “hollow atom” lithium. Acta Physica Sinica, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [12] Ma Yi-Pei, He Li-Ming, Zhang Meng, Zhu Yun-Xia. Calculation of fine-structure intervals of nd series high Rydberg states of Na. Acta Physica Sinica, 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [13] Zhuang Fei, Shen Jian-Qi, Ye Jun. Controlling the photonic bandgap structures via manipulation of refractive index of electromagnetically induced transparency vapor. Acta Physica Sinica, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [14] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [15] Wang Li-Jun, Yu Hui-Ying. The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [16] Ma Hong-Liang, Lu Jiang, Wang Chun-Tao. Measurement of hyperfine structure spectrum in 56908 nm line of 141Pr+. Acta Physica Sinica, 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [17] Zhao Lu-Ming, Wang Li-Jun. . Acta Physica Sinica, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [18] Ge Zi-Ming, Lv Zhi-Wei, Wang Zhi-Wen, Zhou Ya-Jun. Theoretical calculation of the fine-structure and term energy of the excited states 1s~2 nd(n=3,4,5 of lithium-like systems. Acta Physica Sinica, 2002, 51(12): 2733-2739. doi: 10.7498/aps.51.2733
    [19] HAN LI-HONG, GOU BING-CONG, WANG FEI. RELATIVISTIC ENERGIES AND FINE STRUCTURES OF THE EXCITED STATES FOR BERYLLIUM-LIKE BⅡ. Acta Physica Sinica, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  6517
  • PDF Downloads:  332
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2017
  • Accepted Date:  06 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回