Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector

Wang Chen Xu Yi-Hong Li Cheng Lin Hai-Jun

Citation:

Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector

Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Silicon-based photonics has aroused an increasing interest in the recent year, mainly for optical telecommunications or optical interconnects in microelectronic circuits. The waveguide photodetector is one of the building blocks needed for the implementation of fast silicon photonics integrated circuits. The main considerations for designing such a device are the bandwidth, the power consumption and the responsivity. Germanium is now considered as an ideal candidate for fully integrated receivers based on silicon-on-insulator (SOI) substrates and complementary metal oxide semiconductor (CMOS)-like process because of its large optical absorption coefficient at the wavelength for optical communication. Therefore, the study of high speed and high responsivity Ge waveguide photodetectors is necessary. In this paper, high concentration phosphor doped SOI substrate is achieved by using solid-state source diffusion at first. Secondly, the high quality epitaxial germanium (Ge) is grown on phosphor doped SOI substrate by using low temperature Ge buffer layer technique based on the UHV/CVD system. The surface profile, crystal quality and strain of epitaxial Ge film are characterized by using atomic force microscopy, X-ray diffraction (XRD), and Raman scattering spectrum. The results show that the Ge film has a smooth surface of 1.12 nm roughness and about 0.2% tensile strain, which is verified by XRD characterization result. Thirdly, ptype Ge region is formed by BF2+ implantation, and rapid thermal annealing to repair the implantation damages and activate impurity. Finally, the highperformance Ge PIN waveguide photodetectors with different sizes are fabricated by standard COMS technology. Moreover, the device performances, in terms of dark current versus voltage characteristics, photocurrent responsivity and 3 dB bandwidth, are well studied. The results show that the detector with a size of 4 m20 m demonstrates a dark current density of 75 mA/cm2 at -1 V and a photocurrent responsivity of 0.58 A/W for 1.55 m optical wavelength. In addition, an optical band width of 5.3 GHz at -2 V for 1.55 m is also demonstrated, which is far below theortical value of about 40 GHz. This can mainly be attributed to two aspects. On the one hand, Ge PIN structure contains low temperature Ge buffer layer, which has highdensity dislocation because of large lattice mismatch between Si and Ge. Those dislocations or defects can trap and release the photo-generated carrier, which increases the transit time. On the other hand, the contact characteristics of Al with n+-Si and p+-Ge are not very good, leading to a large contact resistance and RC delay. Through improving the above two aspects, the performance of Ge PIN waveguide photodetector will be further enhanced.
      Corresponding author: Wang Chen, chenwang@xmut.edu.cn
    • Funds: Project supported by the High Level Talent Project of Xiamen University of Technology, China (Grant No. YKJ16012R).
    [1]

    Jutzi M, Berroth M, Whl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510

    [2]

    Dehlinger G, Ko ester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A 2004 IEEE Photon. Technol. Lett. 16 2547

    [3]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Jongthammanurak S, Danielson D, Michel J, Kimerling L C 2005 Appl. Phys. Lett. 87 011110

    [4]

    Wu Z, Wang C, Yan G M, Liu G Z, Li C, Huang W, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 186105 (in Chinese)[吴政, 王尘, 严光明, 刘冠州, 李成, 黄巍, 赖虹凯, 陈松岩 2012 物理学报 61 186105]

    [5]

    Xue H Y, Xue C L, Cheng B W, Yu Y D, Wang Q M 2009 Chin. Phys. B 18 1674

    [6]

    Chen H, Verheyen P, de Heyn P, Lepage G, de Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G, van Campenhout J 2016 Opt. Express 24 4622

    [7]

    Wang J, Loh W Y, Chua K T, Zang H, Xiong Y Z, Loh T H, Yu M B, Lee S J, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 445

    [8]

    Vivien L, Osmond J, Fdli J M, MarrisMorini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252

    [9]

    Feng D, Liao S, Dong P, Feng N N, Liang H, Zheng D, Kung C C, Fong J, Shafiiha R, Cunningham J, Krishnamoorthy A V, Asghari M 2009 Appl. Phys. Lett. 95 261105

    [10]

    Li C, Xue C L, Li Y M, Li C B, Cheng B W, Wang Q M 2015 Chin. Phys. B 24 038502

    [11]

    Feng N N, Dong P, Zheng D, Liao S, Liang H, Shafiiha R, Feng D, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96

    [12]

    Tu Z, Liu K, Yi H, Zhou R, Wang X, Zhou Z, Chen Z https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8564/1/A-compact-evanescently-coupled-germanium-PIN-waveguide-photodetector/10.1117/12.2001221.short doi:10.1117/12.2001221 2012 Proc. SPIE 8564 85646

    [13]

    Chen C Z, Zheng Y Y, Huang S H, Li C, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 078104 (in Chinese)[陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩 2012 物理学报 61 078104]

    [14]

    Wang C, Li C, Lin G Y, Lu W F, Wei J B, Huang W, Lai H K, Chen S Y, Di Z F, Zhang M 2014 IEEE Trans. Electron Dev. 61 3060

    [15]

    Murakami Y, Shingyouji T 1994 J. Appl. Phys. 75 3548

    [16]

    Giovane L M, Luan H C, Agarwal A M, Kimerling L C 2001 Appl. Phys. Lett. 78 541

    [17]

    Liu Z, Cheng B, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [18]

    Mitsuru T, Kiyohito M, Masakazu S, Yoshiaki N, Shinichi T 2012 Opt. Express 20 8718

    [19]

    Feng N N, Liao S, Dong P, Zheng D, Liang H, Kung C C, Shafiiha R, Feng D, Li G L, Cunningham John E, Krishnamoorthy A V, Asghari M 2010 Proc. SPIE 7607 760704

    [20]

    Going R, Kim M, Wu M C 2013 Opt. Express 21 22429

  • [1]

    Jutzi M, Berroth M, Whl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510

    [2]

    Dehlinger G, Ko ester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A 2004 IEEE Photon. Technol. Lett. 16 2547

    [3]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Jongthammanurak S, Danielson D, Michel J, Kimerling L C 2005 Appl. Phys. Lett. 87 011110

    [4]

    Wu Z, Wang C, Yan G M, Liu G Z, Li C, Huang W, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 186105 (in Chinese)[吴政, 王尘, 严光明, 刘冠州, 李成, 黄巍, 赖虹凯, 陈松岩 2012 物理学报 61 186105]

    [5]

    Xue H Y, Xue C L, Cheng B W, Yu Y D, Wang Q M 2009 Chin. Phys. B 18 1674

    [6]

    Chen H, Verheyen P, de Heyn P, Lepage G, de Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G, van Campenhout J 2016 Opt. Express 24 4622

    [7]

    Wang J, Loh W Y, Chua K T, Zang H, Xiong Y Z, Loh T H, Yu M B, Lee S J, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 445

    [8]

    Vivien L, Osmond J, Fdli J M, MarrisMorini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252

    [9]

    Feng D, Liao S, Dong P, Feng N N, Liang H, Zheng D, Kung C C, Fong J, Shafiiha R, Cunningham J, Krishnamoorthy A V, Asghari M 2009 Appl. Phys. Lett. 95 261105

    [10]

    Li C, Xue C L, Li Y M, Li C B, Cheng B W, Wang Q M 2015 Chin. Phys. B 24 038502

    [11]

    Feng N N, Dong P, Zheng D, Liao S, Liang H, Shafiiha R, Feng D, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96

    [12]

    Tu Z, Liu K, Yi H, Zhou R, Wang X, Zhou Z, Chen Z https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8564/1/A-compact-evanescently-coupled-germanium-PIN-waveguide-photodetector/10.1117/12.2001221.short doi:10.1117/12.2001221 2012 Proc. SPIE 8564 85646

    [13]

    Chen C Z, Zheng Y Y, Huang S H, Li C, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 078104 (in Chinese)[陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩 2012 物理学报 61 078104]

    [14]

    Wang C, Li C, Lin G Y, Lu W F, Wei J B, Huang W, Lai H K, Chen S Y, Di Z F, Zhang M 2014 IEEE Trans. Electron Dev. 61 3060

    [15]

    Murakami Y, Shingyouji T 1994 J. Appl. Phys. 75 3548

    [16]

    Giovane L M, Luan H C, Agarwal A M, Kimerling L C 2001 Appl. Phys. Lett. 78 541

    [17]

    Liu Z, Cheng B, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [18]

    Mitsuru T, Kiyohito M, Masakazu S, Yoshiaki N, Shinichi T 2012 Opt. Express 20 8718

    [19]

    Feng N N, Liao S, Dong P, Zheng D, Liang H, Kung C C, Shafiiha R, Feng D, Li G L, Cunningham John E, Krishnamoorthy A V, Asghari M 2010 Proc. SPIE 7607 760704

    [20]

    Going R, Kim M, Wu M C 2013 Opt. Express 21 22429

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. Self-powered solar-blind ultraviolet photoelectric detector based on GaSe/β-Ga2O3 heterojunction. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240267
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [5] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [6] Pang Nai-Qi, Wang Yin, Ge Yong, Shi Bin-Jie, Yuan Shou-Qi, Sun Hong-Xiang. Broadband acoustic triggers based on multiport waveguide structures. Acta Physica Sinica, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [7] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [8] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [9] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [10] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [11] Pan Zuo-Jian, Chen Zhi-Zhong, Jiao Fei, Zhan Jing-Lin, Chen Yi-Yong, Chen Yi-Fan, Nie Jing-Xin, Zhao Tong-Yang, Deng Chu-Han, Kang Xiang-Ning, Li Shun-Feng, Wang Qi, Zhang Guo-Yi, Shen Bo. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application. Acta Physica Sinica, 2020, 69(19): 198501. doi: 10.7498/aps.69.20200742
    [12] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [13] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [14] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [15] Kang Da, Luo Bin, Yan Lian-Shan, Pan Wei, Zou Xi-Hua. Supperssion of higher order modes in gain-guided index-antiguided planar waveguide laser. Acta Physica Sinica, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [16] Shi Wen-Jun, Yi Ying-Yan, Li Min. Pressure dependence of refractive index of Ge near the absorption edge. Acta Physica Sinica, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [17] Wang Jian-Yuan, Wang Chen, Li Cheng, Chen Song-Yan. Selective area growth of Ge film on Si. Acta Physica Sinica, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [18] Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [19] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
Metrics
  • Abstract views:  6521
  • PDF Downloads:  229
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2017
  • Accepted Date:  14 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回