Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

Shi Mao-Lei Liu Lei Tian Fang-Hui Wang Peng-Fei Li Jia-Jun Ma Lei

Citation:

Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

Shi Mao-Lei, Liu Lei, Tian Fang-Hui, Wang Peng-Fei, Li Jia-Jun, Ma Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using solid electrolyte instead of liquid electrolyte is regarded as an important measure to solve the safety problems of lithium ion batteries, and has attracted wide attention of researchers. Among many solid electrolytes, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is considered to be one of the most commercially available solid electrolytes for its high ionic conductivity. However, as a replacement substitute of for liquid electrolyte, the LATP solid electrolyte has an ionic transport property of LATP solid electrolyte that still needs to be improved. In this paper, LATP solid electrolyte used for lithium ion batteries is successfully prepared by solid reaction process, and the influences of different sintering temperatures and addition of flux B2O3 and or LiBO2 on the ionic conductivity of LATP solid electrolyte are discussed. The structures, element content, morphologies, and ionic conductivities of the sintered samples are investigated at room temperature by X-ray diffraction, energy dispersive spectrometer, electrochemical impedance spectrum and scanning electron microscopy. It is found that pure phase LATP ceramic solid electrolyte can be obtained at the sintering temperatures between 800 and 1000℃. And the ionic conductivities of the samples first increase first and then decrease with the increasing sintering temperatures increasing. The sample with a highest ionic conductivity of 4.1610-4 S/cm can be obtained at the a sintering temperature of 900℃. Further research shows that the ionic conductivities of the sintered samples can also be effectively improved by using B2O3 instead of LiBO2 as flux. Moreover, the ionic conductivities of the samples first increase first and then decrease with the increasing amount of the flux increasing. And the highest ionic conductivity of 1.6110-3 S/cm is obtained with the sampleby adding B2O3 with a mass fraction of 2% into the sample. The results indicate that the elevating of sintering temperature and the adding of flux B2O3 and or LiBO2 can both decreasing reducing the grain boundary impedances of the LATP samples, so as to thereby improve improving their ionic conductivities. However, when the sintering temperature is higher than 900℃ or the amount of flux B2O3 and or LiBO2 exceeds the mass percentage of 2%, the ionic conductivities of the LATP samples will drop. In addition, the ionic conductivities of the samples used using B2O3 as flux are higher than that those of the samples used LiBO2 as flux. These results also indicate that the increases of ionic conductivities of LATP samples with flux is are closely related to their densities density and compactness, and is irrespective of no matter whether or not the flux contains lithium ion.
      Corresponding author: Liu Lei, thesisliu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204079), the Natural Science Foundation of Hebei Province, China (Grant No. F2017201130), and the Youth Outstanding Talent Project of Hebei Province, China
    [1]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473

    [2]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [3]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6

    [4]

    Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]

    [5]

    Fu J 1997 Solid State Ionics 96 195

    [6]

    Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759

    [7]

    Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015物理学报64 077302]

    [8]

    Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128

    [9]

    Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77

    [10]

    Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945

    [11]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49

    [12]

    Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]

    [13]

    Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]

    [14]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [15]

    Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653

    [16]

    Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847

    [17]

    Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801

    [18]

    Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90

    [19]

    Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]

    [20]

    Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755

    [21]

    Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]

    [22]

    Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339

    [23]

    Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149

    [24]

    Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216

    [25]

    Thevenin J 1985 J. Power Sources 14 45

    [26]

    Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477

    [27]

    Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870

    [28]

    He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]

    [29]

    Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]

    [30]

    Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]

    [31]

    Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014物理学报63 168201]

    [32]

    Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]

    [33]

    Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015物理学报64 248201]

    [34]

    Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97

    [35]

    Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646

    [36]

    Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334

    [37]

    Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611

    [38]

    Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]

  • [1]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473

    [2]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [3]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6

    [4]

    Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]

    [5]

    Fu J 1997 Solid State Ionics 96 195

    [6]

    Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759

    [7]

    Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015物理学报64 077302]

    [8]

    Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128

    [9]

    Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77

    [10]

    Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945

    [11]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49

    [12]

    Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]

    [13]

    Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]

    [14]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [15]

    Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653

    [16]

    Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847

    [17]

    Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801

    [18]

    Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90

    [19]

    Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]

    [20]

    Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755

    [21]

    Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]

    [22]

    Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339

    [23]

    Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149

    [24]

    Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216

    [25]

    Thevenin J 1985 J. Power Sources 14 45

    [26]

    Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477

    [27]

    Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870

    [28]

    He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]

    [29]

    Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]

    [30]

    Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]

    [31]

    Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014物理学报63 168201]

    [32]

    Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]

    [33]

    Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015物理学报64 248201]

    [34]

    Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97

    [35]

    Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646

    [36]

    Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334

    [37]

    Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611

    [38]

    Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]

  • [1] Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin. Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method. Acta Physica Sinica, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] Wang Xiao-Yi, Wang Xi, Wang Jun, Cheng De-Qiang, Wang Yue. Effects of V2O5-Al2O3 sintering aid on properties of low temperature sintered Li-Zn microwave ferrites. Acta Physica Sinica, 2023, 72(3): 037501. doi: 10.7498/aps.72.20221723
    [3] Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo. Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface. Acta Physica Sinica, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [5] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu. Formation mechanisms of Ti2AlC and Ti3AlC during solid-state sintering between multilayer graphene and TiAl alloy composite. Acta Physica Sinica, 2022, 71(19): 196801. doi: 10.7498/aps.71.20220845
    [6] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] Ren Yuan, Zou Zhe-Yi, Zhao Qian, Wang Da, Yu Jia, Shi Si-Qi. Brief overview of microscopic physical image of ion transport in electrolytes. Acta Physica Sinica, 2020, 69(22): 226601. doi: 10.7498/aps.69.20201519
    [8] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [9] Xiao Rui-Juan, Li Hong, Chen Li-Quan. Development of new lithium battery materials by material genome initiative. Acta Physica Sinica, 2018, 67(12): 128801. doi: 10.7498/aps.67.20180657
    [10] Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi. Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin. Acta Physica Sinica, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [11] Wu Fang, Wang Wei. Thermoelectric properties of the Bi2Te3 nanocrystalline bulk alloy pressed by the high-pressure sintering. Acta Physica Sinica, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [12] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [13] Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao, Li Xiang-Dong. Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis. Acta Physica Sinica, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [14] Wang Jun-Jun, Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Wang Bo. Investigations of microstructure and ionic conductivity for (PEO)8-ZnO-LiClO4 polymer nanocomposite electrolytes. Acta Physica Sinica, 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [15] Hu Yong-Gang, Xiao Jian-Zhong, Xia Feng, Wu Xi-Wang, Yan Shuang-Zhi. Model of the relationship between properties and phase composition of zirconia solid electrolyte. Acta Physica Sinica, 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [16] Jiang Xue-Ning, Wang Hao, Ma Xiao-Ye, Meng Xian_Qin, Zhang Qing-Yu. Growth and electrical conductivity of Gd2O3 doped CeO2 ion conductor electrolyte film on sapphire substrate. Acta Physica Sinica, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [17] GUO XIN, YUAN RUN-ZHANG, SUN YAO-QING, CUI KUN. ROLE OF GRAIN BOUNDARIES IN POLYCRYSTALLINE ZIRCONIA-BASED SOLID ELECTROLYTES. Acta Physica Sinica, 1996, 45(5): 860-868. doi: 10.7498/aps.45.860
    [18] YUAN WANG-ZHI, LI WEN-HUI, YUAN WANG-XI, WANG DA-ZHI. A STUDY ON CONDUCTANCE AND STRUCTURE OF MONTMORILLONITE SOLID ELECTROLYTES. Acta Physica Sinica, 1990, 39(6): 98-104. doi: 10.7498/aps.39.98
    [19] YU WEN-HAI, DING YI. FRACTAL MODEL OF THE INTERFACE BETWEEN ELECTROLYTE AND ELECTRODE AND ITS FREQUENCY RESPONSE. Acta Physica Sinica, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
    [20] ZHU BIN, WANG DA-ZHI, YU WEN-HAI. CONDUCTANCE OF HIGH-VALENCE IONS IN MONTMORILLONITE SOLID ELECTROLYTES. Acta Physica Sinica, 1988, 37(8): 1307-1314. doi: 10.7498/aps.37.1307
Metrics
  • Abstract views:  5290
  • PDF Downloads:  294
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2017
  • Accepted Date:  09 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回