Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Switching characteristics of all-spin logic devices based on graphene interconnects

Li Cheng Cai Li Wang Sen Liu Bao-Jun Cui Huan-Qing Wei Bo

Citation:

Switching characteristics of all-spin logic devices based on graphene interconnects

Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Traditional complementary metal-oxide-semiconductor (CMOS) technology has reached nanoscale and its physical limits are determined by atomic theory and quantum mechanics, which results in a series of problems such as deteriorated device reliability, large circuit interconnection delay, and huge static power dissipation. In the past decades, with the discovery of giant magnetoresistance effect and tunnel magnetoresistance effect, spintronics has become a research hotspot in this field. Specially, spin transfer torque effect has been experimentally verified that the magnetization of a ferromagnet layer can be manipulated using spin polarized current rather than an external magnetic field. Spintronics is a new type of electronics which utilizes spin rather than charge as state variable for electrical information processing and storage. As an example, all spin logic (ASL) devices, which stores information by using the magnetization direction of the nanomagnet and communication by using spin current, is generally thought to be a good post-CMOS candidate. Compared with the typical metal material, the graphene material has a large conductivity, long spin relaxation time, and weak spin-orbit interaction. Therefore, the dissipation of spin current in the graphene material is weaker than the counterpart in typical metal when the injected current is identical. In this paper, the switching characteristics of all spin logic device comprised of graphene interconnects are analyzed by using the coupled spin transport and magneto-dynamics model. The results show that comparing with ASL device comprised of copper interconnects, the magnetic moment reversal time of ASL with graphene interconnection is short and the spin current flows into the output magnet is large under the condition of same applied voltage and device size. Meanwhile, the switching delay and the energy dissipation are lower when the interconnects are shorter and narrower. When the critical switching current which is required for the magnetization reversal is applied, the reliable working length of graphene interconnection is significantly longer than that of copper interconnection. So the graphene is the more ideal interconnect material than metal material. Moreover, the switching delay and power dissipation could be further reduced by properly selecting the interconnection dimension. These results mentioned above provide guidelines for the optimization and applications of ASL devices.
      Corresponding author: Cai Li, qianglicai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Program of Shaanxi Provincial Natural Science for Basic Research, China (Grant Nos. 2017JM6072, 2014JQ8343).
    [1]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [2]

    Xu P, Xia K, Gu C Z, Tang L, Yang H F, Li J J 2008 Nature Nanotech. 3 97

    [3]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [4]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [5]

    Volmer F, Drogeler M, Maynicke E, et al. 2013 Phys. Rev. B 88 161405

    [6]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [7]

    Hu J X, Haratipour N, Koester S J 2015 J. Appl. Phys. 117 17B524

    [8]

    Augustine C, Panagopoulos G, Behin-aein B, Srinivasan S, Sarkar A, Roy K 2011 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures San Diego, California, USA, June 8-9, 2011 p129

    [9]

    An Q, Su L, Klein J O, Beux S L, Connor I, Zhao W S 2015 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures Boston, Massachusetts, USA, July 8-10, 2015 p163

    [10]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [11]

    Chang S C, Dutta S, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2015 IEEE J. Explorat. Solid-State Computat. Dev. Circ. 1 49

    [12]

    Han W, Mccreary K M, Pi K, Wang W H, Li Y, Wen H, Chen J R, Kawakami R K 2012 J. Magn. Magn. Mater. 324 369

    [13]

    Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J, Chen Z 2013 Nano Lett. 13 5177

    [14]

    Lin C C, Gao Y, Penumatcha A V, Diep V Q, Appenzeller J, Chen Z 2014 ACS Nano 8 3807

    [15]

    Su L, Zhao W S, Zhang Y, Querlioz D, Zhang Y G, Klein J O, Dollfus P, Bournel A 2015 Appl. Phys. Lett. 106 072407

    [16]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nature Nanotech. 9 794

    [17]

    Zhai F, Zhao X F, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [18]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [19]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circ. Syst. I. Reg. Papers 59 2801

    [20]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circ. Syst. I. Reg. Papers 61 393

    [21]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [22]

    Verma S, Murthy M S, Kaushik B K 2015 IEEE Trans. Magn. 51 3400710

    [23]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯2016物理学报65 098501]

    [24]

    Bass J, William P P 2007 J. Phys.:Condens. Matter 19 183201

    [25]

    Takahashi S, Maekawa S 2003 Phys. Rev. B 67 052409

    [26]

    Wang S, Cai L, Qi K, Yang X K, Feng C W, Cui H Q 2016 Micro. Nano Lett. 11 508

  • [1]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [2]

    Xu P, Xia K, Gu C Z, Tang L, Yang H F, Li J J 2008 Nature Nanotech. 3 97

    [3]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [4]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [5]

    Volmer F, Drogeler M, Maynicke E, et al. 2013 Phys. Rev. B 88 161405

    [6]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [7]

    Hu J X, Haratipour N, Koester S J 2015 J. Appl. Phys. 117 17B524

    [8]

    Augustine C, Panagopoulos G, Behin-aein B, Srinivasan S, Sarkar A, Roy K 2011 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures San Diego, California, USA, June 8-9, 2011 p129

    [9]

    An Q, Su L, Klein J O, Beux S L, Connor I, Zhao W S 2015 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures Boston, Massachusetts, USA, July 8-10, 2015 p163

    [10]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [11]

    Chang S C, Dutta S, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2015 IEEE J. Explorat. Solid-State Computat. Dev. Circ. 1 49

    [12]

    Han W, Mccreary K M, Pi K, Wang W H, Li Y, Wen H, Chen J R, Kawakami R K 2012 J. Magn. Magn. Mater. 324 369

    [13]

    Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J, Chen Z 2013 Nano Lett. 13 5177

    [14]

    Lin C C, Gao Y, Penumatcha A V, Diep V Q, Appenzeller J, Chen Z 2014 ACS Nano 8 3807

    [15]

    Su L, Zhao W S, Zhang Y, Querlioz D, Zhang Y G, Klein J O, Dollfus P, Bournel A 2015 Appl. Phys. Lett. 106 072407

    [16]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nature Nanotech. 9 794

    [17]

    Zhai F, Zhao X F, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [18]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [19]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circ. Syst. I. Reg. Papers 59 2801

    [20]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circ. Syst. I. Reg. Papers 61 393

    [21]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [22]

    Verma S, Murthy M S, Kaushik B K 2015 IEEE Trans. Magn. 51 3400710

    [23]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯2016物理学报65 098501]

    [24]

    Bass J, William P P 2007 J. Phys.:Condens. Matter 19 183201

    [25]

    Takahashi S, Maekawa S 2003 Phys. Rev. B 67 052409

    [26]

    Wang S, Cai L, Qi K, Yang X K, Feng C W, Cui H Q 2016 Micro. Nano Lett. 11 508

  • [1] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [3] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [5] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [6] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [7] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [8] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [9] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [10] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Chen Ai-Min, Yang Ai-Yun, Zhang Ting-Ting, Liu Yang. Rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes. Acta Physica Sinica, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [11] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [12] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [13] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [14] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang. Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method. Acta Physica Sinica, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [16] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [17] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [18] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [19] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [20] Yin Wei-Hong, Han Qin, Yang Xiao-Hong. The progress of semiconductor photoelectric devices based on graphene. Acta Physica Sinica, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
Metrics
  • Abstract views:  5337
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2017
  • Accepted Date:  10 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回