Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of zigzag-edged graphene antidot lattice and its transport properties

Zhang Ting-Ting Cheng Meng Yang Rong Zhang Guang-Yu

Citation:

Fabrication of zigzag-edged graphene antidot lattice and its transport properties

Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene nanostructures with defined edges are proposed as a promising platform for the realization of nano-electronics and spin-electronics. However, patterned graphene nanostructure can lead to extra damage and drastically reduce its charge carrier mobility due to the edge disorder. The high flexibility of a top-down patterning method with edge smoothness is extremely desirable. Hydrogen plasma enhanced anisotropic etching graphene is demonstrated to be an efficient method of fabricating zigzag-edge graphene nanostructures. In addition, boron nitride is shown to be an excellent substrate for graphene due to its atomic flatness. Here in this work, we fabricate zigzag edge graphene antidot lattices on a boron nitride substrate via dry transfer method and traditional electron beam lithography, and reactive ion etching followed by hydrogen anisotropic etching approach. At low magnetic fields, weak localization is observed and its visibility is enhanced by intervalley scattering on antidot edges. We observe commensurate features in magnetotransport properties which stem from carriers around one antidot, signifying the high quality of our patterned samples. At high magnetic field, crossover from Shubnikov-de Haas oscillation to quantum Hall effect can be clearly observed due to the high mobility of our zigzag edge graphene antidot lattices. The transport properties of our patterned samples suggest that our fabrication method paves the way for achieving high quality graphene antidot lattices. High quality zigzag edge graphene antidot lattice might be a great platform to study the transport properties of lateral superlattice potential modulation graphene.
      Corresponding author: Yang Rong, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, 61390503) and the National Basic Research Program of China (Grant Nos. 2013CB934500, 2013CBA01602).
    [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155102

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [5]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162

    [6]

    Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, L Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F 2016 Nano Lett. 16 2254

    [7]

    Zhang T T, Wu S, Yang R, Zhang G Y 2017 Frontiers Phys. 12 127206

    [8]

    Yu Z M, Pan H, Yao Y 2015 Phys. Rev. B 92 155419

    [9]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [10]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506

    [11]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [12]

    Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W, Ye P D 2008 Appl. Phys. Lett. 93 122102

    [13]

    Shimizu T, Nakamura J, Tada K, Yagi Y, Haruyama J 2012 Appl. Phys. Lett. 100 023104

    [14]

    Yagi R, Shimomura M, Tahara F, Kobara H, Fukada S 2012 J. Phys. Soc. Jpn. 81 063707

    [15]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [16]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotechnol. 5 190

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [18]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods R C, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 物理学报 64 077305]

    [21]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103

    [22]

    Nihey F, Nakamura K, Takamasu T, Kido G, Sakon T, Motokawa M 1999 Phys. Rev. B 59 14872

    [23]

    Smet J H, von Klitzing K, Weiss D, Wegscheider W 1998 Phys. Rev. Lett. 80 4538

    [24]

    Eroms J, Tolkiehn M, Weiss D, Rossler U, de Boeck J, Borghs S 2002 Physica E 12 918

    [25]

    Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V V, Schweizer H 2001 Phys. Rev. Lett. 86 147

    [26]

    Shabani J, Shayegan M, Winkler R 2008 Phys. Rev. Lett. 100 096803

    [27]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402

    [28]

    Yagi R, Sakakibara R, Ebisuoka R, Onishi J, Watanabe K, Taniguchi T, Iye Y 2015 Phys. Rev. B 92 195406

    [29]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2013 Nat. Phys. 9 225

    [30]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693

    [31]

    Bischoff D, Krhenmann T, Drscher S, Gruner M A, Barraud C, Ihn T, Ensslin K 2012 Appl. Phys. Lett. 101 203103

    [32]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [33]

    Shi Z, Yang R, Zhang L, Wang Y, Liu D, Shi D, Wang E, Zhang G 2011 Adv. Mater. 23 3061

    [34]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101

    [35]

    Wang G L, Xie L, Chen P, Yang R, Shi D X, Zhang G Y 2016 Acta Phys. Sin. 65 196101 (in Chinese) [王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇 2016 物理学报 65 196101]

    [36]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104

  • [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155102

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [5]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162

    [6]

    Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, L Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F 2016 Nano Lett. 16 2254

    [7]

    Zhang T T, Wu S, Yang R, Zhang G Y 2017 Frontiers Phys. 12 127206

    [8]

    Yu Z M, Pan H, Yao Y 2015 Phys. Rev. B 92 155419

    [9]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [10]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506

    [11]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [12]

    Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W, Ye P D 2008 Appl. Phys. Lett. 93 122102

    [13]

    Shimizu T, Nakamura J, Tada K, Yagi Y, Haruyama J 2012 Appl. Phys. Lett. 100 023104

    [14]

    Yagi R, Shimomura M, Tahara F, Kobara H, Fukada S 2012 J. Phys. Soc. Jpn. 81 063707

    [15]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [16]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotechnol. 5 190

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [18]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods R C, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 物理学报 64 077305]

    [21]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103

    [22]

    Nihey F, Nakamura K, Takamasu T, Kido G, Sakon T, Motokawa M 1999 Phys. Rev. B 59 14872

    [23]

    Smet J H, von Klitzing K, Weiss D, Wegscheider W 1998 Phys. Rev. Lett. 80 4538

    [24]

    Eroms J, Tolkiehn M, Weiss D, Rossler U, de Boeck J, Borghs S 2002 Physica E 12 918

    [25]

    Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V V, Schweizer H 2001 Phys. Rev. Lett. 86 147

    [26]

    Shabani J, Shayegan M, Winkler R 2008 Phys. Rev. Lett. 100 096803

    [27]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402

    [28]

    Yagi R, Sakakibara R, Ebisuoka R, Onishi J, Watanabe K, Taniguchi T, Iye Y 2015 Phys. Rev. B 92 195406

    [29]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2013 Nat. Phys. 9 225

    [30]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693

    [31]

    Bischoff D, Krhenmann T, Drscher S, Gruner M A, Barraud C, Ihn T, Ensslin K 2012 Appl. Phys. Lett. 101 203103

    [32]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [33]

    Shi Z, Yang R, Zhang L, Wang Y, Liu D, Shi D, Wang E, Zhang G 2011 Adv. Mater. 23 3061

    [34]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101

    [35]

    Wang G L, Xie L, Chen P, Yang R, Shi D X, Zhang G Y 2016 Acta Phys. Sin. 65 196101 (in Chinese) [王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇 2016 物理学报 65 196101]

    [36]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104

  • [1] Liao Jing-Jing, Kang Qi, Luo Fei, Lin Fu-Jun. Transport of closed ring containing chiral active particles under transversal temperature difference. Acta Physica Sinica, 2023, 72(3): 030501. doi: 10.7498/aps.72.20221772
    [2] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [4] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [7] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [8] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [9] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [10] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [12] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [13] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [15] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [16] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [17] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [18] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Chen Tao, Zhang Ting. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [20] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
Metrics
  • Abstract views:  5926
  • PDF Downloads:  504
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2017
  • Accepted Date:  21 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回