Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of graphene on Al2O3 (0001) surface

Li Jin-Jin Li Duo-Sheng Hong Yue Zou Wei He Jun-Jie

Citation:

Growth of graphene on Al2O3 (0001) surface

Li Jin-Jin, Li Duo-Sheng, Hong Yue, Zou Wei, He Jun-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • At present, high quality graphene is synthesized mainly by chemical vapor deposition. It is crucial to decompose and adsorb methane (CH4) on the surface of substrate before CH4 grows into graphene. The graphene is grown mainly on metal substrate due to the catalytic effect of metal. It is difficult to grow graphene thin film on the surface of non-metallic substrate, especially on the surface of -Al2O3 (0001). In this paper, the density functional theory based generalized gradient approximation method is applied to simulating the nucleation of graphene on -Al2O3 (0001) surface, synthesized by chemical vapor deposition. First, we establish a scientific -Al2O3 (0001) surface model, then simulate the decomposition process of CH4 on -Al2O3 (0001) surface by calculating the adsorption sites and adsorption configurations of groups and atoms. Finally, we investigate the groups of CH4 decomposition and atom coupling process on -Al2O3 (0001) surface. The results show that the CH3 groups, C and H atoms are preferentially adsorbed at the top of the O atoms, and the adsorption energies are -2.428 eV,-4.903 eV, and -4.083 eV, respectively. The CH2 and CH groups are preferentially adsorbed on the bridge between O and Al atoms with the adsorption energies of -4.460 eV and -3.940 eV, respectively. The decomposition of CH4 on -Al2O3 (0001) surface is an endothermic process. It requires higher energy and cross reactive energy barrier for CH4 to be completely decomposed into C atom, which makes it difficult that the C atom stays on the substrate surface. The coupling process among CH groups on the surface of -Al2O3 (0001) is an exothermic process. When CH and CH groups are coupled, the energy of the system decreases by 4.283 eV. When (CH)2 and CH groups are coupled, the energy of the system decreases by 3.740 eV. The (CH)x can be obtained by continuous migration and coupling between the CH groups on the surface of the -Al2O3 (0001), and (CH)x group is a precursor of graphene growth. The energy of the system decreases in the process. The above results show that the activated atom or group of graphene nucleation is not C atom but CH group. The CH group migration and aggregation on the surface of -Al2O3 (0001) give priority to the formation of lower energy (CH)x structure. In order to better understand the microscopic growth process of graphene on sapphire, it is important to study the role of (CH)x in the surface of sapphire for revealing the nucleation mechanism of graphene.
      Corresponding author: Li Duo-Sheng, duosheng.li@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51562027) and the Jiangsu Key Laboratory of Precision and Micro Manufacturing Technology Foundation, China (Grant No. JKL2015001).
    [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 物理学报 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 物理学报 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 物理学报 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 物理学报 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [2] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [4] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [5] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [6] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [7] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [8] Chen Xuan, Yuan Yong-Bo, Deng Kai-Ming, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun. Density functional study on the geometric property of MnxSny(x=2,3,4; y=18,24,30). Acta Physica Sinica, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [9] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [10] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [11] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [12] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [13] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [16] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] Xu Guo-Liang, Zhu Zheng-He, Ma Mei-Zhong, Xie An-Dong. Study on the effect of external electric field excitation on methane. Acta Physica Sinica, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
Metrics
  • Abstract views:  4524
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2017
  • Accepted Date:  25 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回