Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and electrical engineering of graphene nanoribbons

Zhang Hui Cai Xiao-Ming Hao Zhen-Liang Ruan Zi-Lin Lu Jian-Chen Cai Jin-Ming

Citation:

Fabrication and electrical engineering of graphene nanoribbons

Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, as a typical representative of advanced materials, exhibits excellent electronical properties due to its unique and unusual crystal structure. The valence band and conduction band of pristine graphene meet at the corners of the Brillouin zone, leading to a half-metal material with zero bandgap. However, although the extraordinary electronical properties make graphene possess excellent electrical conductivity, it also restricts its applications in electronic devices, which usually needs an appropriate bandgap. Therefore, opening and tuning the bandgap of graphene has aroused great scientific interest. To date, many efforts have been made to open the bandgap of graphene, including defects, strain, doping, surface adsorptions, structure tunning, etc. Among these methods, graphene nanoribbon, the quasi-one-dimensional strips of graphene with finite width ( 10 nm) and high aspect ratios, possesses a band gap opening at the Dirac point due to the quantum confinement effects. Thus, graphene nanoribbon has been considered as one of the most promising candidates for the future electronic devices due to its unique electronic and magnetic properties. Specifically, the band gap of graphene nanoribbons is strongly dependent on the lateral size and the edge geometry, which has attracted tremendous attention. Furthermore, it has been reported that armchair graphene nanoribbons possess gaps inversely proportional to their width, and numerous efforts have been devoted to fabricating the graphene nanoribbons with different widths by top-down or bottom-up approaches. Moreover, based on the on-surface reaction, the bottom-up approach shows the capability of controlling the width and edge structures, and it is almost contamination-free processing, which is suitable to performing further characterizations. Ultra-high-vacuum scanning tunneling microscope is a valid tool to fabricate and characterize the graphene nanorribons, and it can also obtain the band structure information when combined with the scanning tunneling spectroscopy. Taking the advantage of the bottom-up synthetic technique, the nearly perfect graphene nanoribbons can be fabricated based on the organic molecule reaction on surface, which is a promising strategy to study the original electronic properties. To precisely tuning the band engineering of graphene nanoribbons, the researchers have adopted various effective methods, such as changing the widths and topological morphologies of graphene nanoribbons, doping the graphene nanoribbons with heteroatoms, fabricating the heterojunctions under a controlable condition. The precise control of graphene synthesis is therefore crucial for probing their fundamental physical properties. Here we highlight the methods of fabricating the graphene nanoribbons and the precise tuning of graphene bandgap structure in order to provide a feasible way to put them into application.
      Corresponding author: Cai Jin-Ming, j.cai@kmust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674136) and the Preparatory Talent Project for the Academic Leaders of Yunnan Province, China (Contract No. 2017HB010).
    [1]

    Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459

    [7]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [8]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610

    [9]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52

    [11]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311

    [12]

    Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]

    [13]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804

    [15]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326

    [16]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219

    [17]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [18]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806

    [19]

    Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856

    [20]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [21]

    Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986

    [22]

    Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802

    [23]

    Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16

    [24]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [25]

    Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928

    [26]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [27]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470

    [28]

    Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170

    [29]

    Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397

    [30]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [31]

    Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527

    [32]

    Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968

    [33]

    Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366

    [34]

    Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876

    [35]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321

    [36]

    Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168

    [37]

    Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127

    [38]

    Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764

    [39]

    Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47

    [40]

    Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602

    [41]

    Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429

    [42]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [43]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [44]

    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134

    [45]

    Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143

    [46]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [47]

    Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488

    [48]

    Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635

    [49]

    Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815

    [50]

    Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770

    [51]

    Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896

    [52]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442

    [53]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022

    [54]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177

    [55]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802

    [56]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930

    [57]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380

    [58]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123

    [59]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187

    [60]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983

    [61]

    Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519

    [62]

    Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [63]

    Yazyev O V 2013 Chem. Res. 46 2319

    [64]

    Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489

    [65]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [66]

    Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006

    [67]

    de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000

    [68]

    Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422

    [69]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

    [70]

    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089

    [71]

    Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684

    [72]

    Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355

    [73]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [74]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [75]

    Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114

    [76]

    Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633

    [77]

    Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]

    [78]

    Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338

    [79]

    Lu Y, Guo J 2010 Nano Res. 3 189

    [80]

    Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411

    [81]

    Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109

  • [1]

    Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459

    [7]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [8]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610

    [9]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52

    [11]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311

    [12]

    Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]

    [13]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804

    [15]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326

    [16]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219

    [17]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [18]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806

    [19]

    Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856

    [20]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [21]

    Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986

    [22]

    Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802

    [23]

    Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16

    [24]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [25]

    Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928

    [26]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [27]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470

    [28]

    Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170

    [29]

    Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397

    [30]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [31]

    Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527

    [32]

    Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968

    [33]

    Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366

    [34]

    Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876

    [35]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321

    [36]

    Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168

    [37]

    Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127

    [38]

    Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764

    [39]

    Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47

    [40]

    Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602

    [41]

    Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429

    [42]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [43]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [44]

    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134

    [45]

    Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143

    [46]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [47]

    Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488

    [48]

    Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635

    [49]

    Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815

    [50]

    Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770

    [51]

    Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896

    [52]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442

    [53]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022

    [54]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177

    [55]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802

    [56]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930

    [57]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380

    [58]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123

    [59]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187

    [60]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983

    [61]

    Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519

    [62]

    Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [63]

    Yazyev O V 2013 Chem. Res. 46 2319

    [64]

    Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489

    [65]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [66]

    Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006

    [67]

    de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000

    [68]

    Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422

    [69]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

    [70]

    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089

    [71]

    Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684

    [72]

    Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355

    [73]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [74]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [75]

    Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114

    [76]

    Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633

    [77]

    Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]

    [78]

    Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338

    [79]

    Lu Y, Guo J 2010 Nano Res. 3 189

    [80]

    Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411

    [81]

    Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Huang Hong-Fei, Yao Yang, Yao Cheng-Jun, Hao Xiang, Wu Yin-Zhong. Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer. Acta Physica Sinica, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [3] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [5] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [6] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [7] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [10] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [12] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [13] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [14] Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie. Fabrication of graphene nanostructure and bandgap tuning. Acta Physica Sinica, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [15] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] Wei Xiao-Lin, Chen Yuan-Ping, Wang Ru-Zhi, Zhong Jian-Xin. Studies on electrical properties of graphene nanoribbons with pore defects. Acta Physica Sinica, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [20] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
Metrics
  • Abstract views:  7158
  • PDF Downloads:  598
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2017
  • Accepted Date:  25 September 2017
  • Published Online:  05 November 2017

/

返回文章
返回