Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High performance graphene Hall sensors

Huang Le Zhang Zhi-Yong Peng Lian-Mao

Citation:

High performance graphene Hall sensors

Huang Le, Zhang Zhi-Yong, Peng Lian-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The state-of-the-art graphene Hall elements and integrated circuits are reviewed. By optimizing the growth and transfer of graphene and the micro-fabrication process of Hall sensor, graphene Hall elements and integrated circuits outperform conventional Hall sensors in many aspects. Graphene Hall elements exhibit better sensitivities, resolutions, linearities and temperature stabilities than commercialized Hall elements. Through developing a set of passivation processes, the stabilities of graphene Hall elements are improved. Besides, the flexible magnetic sensing and multifunctional detection applications based on graphene are demonstrated. In addition, graphene/silicon hybrid Hall integrated circuits are realized. By developing a set of low temperature processes (below 180℃), graphene Hall elements are monolithically integrated onto the passivation layer of silicon complementary metal oxide semiconductor chip. This work demonstrates that graphene possesses significant performance advantages in Hall magnetic sensing and potentially practical applications.
      Corresponding author: Zhang Zhi-Yong, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn ; Peng Lian-Mao, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn
    • Funds: Project supported by the Nano Technology Key Development Program of China Key Research and Development Plan (Grant No. 2016YF0201900), the National Natural Science Foundation of China (Grant Nos. 61390504, 61621061), and the Beijing Science and Technology Commission Pilot and Material Innovation Project, China (Grant No. D161100002616001-3).
    [1]

    Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207

    [2]

    Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)

    [3]

    Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78

    [4]

    Shibasaki I 1997 J. Cryst. Growth 175 13

    [5]

    Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75

    [6]

    Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]

    [7]

    Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405

    [8]

    Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106

    [9]

    Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124

    [10]

    Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506

    [11]

    Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480

    [12]

    Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326

    [15]

    Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105

    [16]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [17]

    Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109

    [18]

    Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [21]

    de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [22]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706

    [23]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [24]

    Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102

    [25]

    Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255

    [26]

    Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909

    [27]

    Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107

    [28]

    Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509

    [29]

    Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520

    [30]

    Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585

    [31]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [32]

    Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683

    [33]

    Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5

    [34]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [35]

    Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581

    [36]

    Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109

    [37]

    Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418

    [38]

    Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137

    [39]

    Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383

  • [1]

    Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207

    [2]

    Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)

    [3]

    Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78

    [4]

    Shibasaki I 1997 J. Cryst. Growth 175 13

    [5]

    Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75

    [6]

    Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]

    [7]

    Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405

    [8]

    Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106

    [9]

    Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124

    [10]

    Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506

    [11]

    Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480

    [12]

    Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326

    [15]

    Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105

    [16]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [17]

    Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109

    [18]

    Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [21]

    de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [22]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706

    [23]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [24]

    Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102

    [25]

    Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255

    [26]

    Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909

    [27]

    Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107

    [28]

    Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509

    [29]

    Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520

    [30]

    Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585

    [31]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [32]

    Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683

    [33]

    Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5

    [34]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [35]

    Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581

    [36]

    Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109

    [37]

    Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418

    [38]

    Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137

    [39]

    Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun. Research progress of electromechanical graphene resonant sensors. Acta Physica Sinica, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] Li Qing-Xin, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Zhu Wang, Song Jun-Wei, An Dong-Dong, Gan Qi-Kang, Wang Kai-Yuan, Wang Hao-Lin, Mai Zhi-Hong, Xi Chuan-Ying, Zhang Jing-Lei, Yu Ge-Liang, Wang Lei. Even-denominator fractional quantum Hall state in bilayer graphene. Acta Physica Sinica, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [4] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [6] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [7] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [8] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [9] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [10] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [11] Jiang Yan-Nan, Wang Yang, Ge De-Biao, Li Si-Min, Cao Wei-Ping, Gao Xi, Yu Xin-Hua. An ultra-wideband absorber based on graphene. Acta Physica Sinica, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [12] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [14] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [15] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [17] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [20] Tan Zhen-Bing, Ma Li, Liu Guang-Tong, Lü Li, Yang Chang-Li. Scaling law of quantum Hall plateau-to-plateau transition in single layer graphene. Acta Physica Sinica, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
Metrics
  • Abstract views:  7915
  • PDF Downloads:  429
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2017
  • Accepted Date:  16 September 2017
  • Published Online:  05 November 2017

/

返回文章
返回