Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure of a 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride thin film revealed by synchrotron-based resonant photoemission spectroscopy

Li Zhi-Hao Cao Liang Guo Yu-Xian

Citation:

Electronic structure of a 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride thin film revealed by synchrotron-based resonant photoemission spectroscopy

Li Zhi-Hao, Cao Liang, Guo Yu-Xian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The electronic structure of a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) thin film is investigated in situ using synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy and resonant photoemission spectroscopy (RPES).The NEXAFS spectroscopy can monitor the electronic transitions from core level to unoccupied states.The C K-edge NEXAFS spectrum of the PTCDA thin film shows four distinct absorption peaks below 290 eV,which are attributed to the transitions from 1s core level of C-atoms in different chemical environments (perylene core C-atoms vs anhydride C-atoms) into lowest unoccupied molecular orbitals (LUMOs) with * symmetry. The RPES spectra are collected in the valence band region by sweeping photon energy across the C 1s * absorption edge.Three typical features of the C 1s signals excited by second-order harmonic X-ray,resonant photoemission and resonant Auger features are observed in RPES spectra,and are identified,relying on the development of kinetic energy of the emitted photoelectrons upon the change of incident photons energy.It is found that the C 1s signals excited by second-order harmonic X-ray are present at high kinetic energy side of spectrum.The kinetic energy of this feature shows photon energy dependence,that is,this feature shifts to higher kinetic energy by photon energy increasing twice.Resonant Auger peaks in RPES spectra are located on the low kinetic energy side with constant kinetic energy regardless the change of photon energy.The resonant Auger may originate from deeper molecular orbitals with binding energy large than 4.1 eV,suggesting that the resonant Auger decay process involved in deeper molecular orbitals occurs on a time scale comparable to C 1s core hole lifetime of 6 femtoseconds.Resonant enhancement of highest occupied molecular orbitals (HOMOs) derived valence band features or HOMO-1 and HOMO-2 derived resonant photoemission features in our case are lying between the C 1s signals and the resonant Auger signals.The Kinetic energy increases as the photon energy sweeps across the absorption edge,whereas their binding energy remains constant.In addition, the enhancements of two resonances show photon energy dependence that enhancement of HOMO-1 related resonance dominates over HOMO-2 related resonance at energies corresponding to perylene core C 1s to LUMOs transitions, whereas HOMO-2 related resonance becomes dominant at transitions from anhydride C 1s to LUMOs.This behavior can be related to the wavefunction character and symmetry of the frontier molecular orbitals.Clarifying each resonant feature in RPES spectra and their origin will pave the way for accurately determining the ultrafast charge transfer time at organic/electrode interfaces using synchrotron-based core hole clock technique implementation of RPES.
      Corresponding author: Cao Liang, lcao@hmfl.ac.cn;guo_yuxian@163.com ; Guo Yu-Xian, lcao@hmfl.ac.cn;guo_yuxian@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574317, 21503233), Anhui Provincial Natural Science Foundation, China (Grant No.1608085MA07), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No.KJ2016A143).
    [1]

    Tang M L, Bao Z N 2011 Chem. Mater. 23 446

    [2]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [3]

    Torsi L, Magliulo M, Manoli K, Palazzo G 2013 Chem. Soc. Rev. 42 8612

    [4]

    Reineke S, Thomschke M, Lssem B, Leo K 2013 Rev. Mod. Phys. 85 1245

    [5]

    Hains A W, Liang Z Q, Woodhouse M A, Gregg B A 2010 Chem. Rev. 110 6689

    [6]

    Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H 2016 Nat. Energy 1 15027

    [7]

    Ostroverkhova O 2016 Chem. Rev. 116 13279

    [8]

    Hu Z H, Zhong Z M, Chen Y W, Sun C, Huang F, Peng J B, Wang J, Cao Y 2016 Adv. Funct. Mater. 26 129

    [9]

    Pan X, Ju H X, Feng X F, Fan Q T, Wang C H, Yang Y W, Zhu J F 2015 Acta Phys. Sin. 64 077304 (in Chinese) [潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发 2015 物理学报 64 077304]

    [10]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2014 J. Phys. Chem. C 118 4160

    [11]

    Brhwiler P A, Karis O, Mrtensson N 2002 Rev. Mod. Phys. 74 703

    [12]

    Zharnikov M 2015 J. Electron. Spectrosc. Relat. Phenom. 200 160

    [13]

    Cao L, Gao X Y, Wee A T S, Qi D C 2014 Adv. Mater. 26 7880

    [14]

    Forrest S R 2003 J. Phys. Condens. Matter 15 S2599

    [15]

    Tautz F S 2007 Prog. Surf. Sci. 82 47

    [16]

    Guo Y L, Yu G, Liu Y Q 2010 Adv. Mater. 22 4427

    [17]

    Ou G P, Song Z, Wu Y Y, Chen X Q, Zhang F J 2006 Chin. Phys. B 15 1296

    [18]

    Cao L, Zhang W H, Chen T X, Han Y Y, Xu G Q, Zhu J F, Yan W S, Xu Y, Wang F 2010 Acta Phys. Sin. 59 1681 (in Chinese) [曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰 2010 物理学报 59 1681]

    [19]

    Han Y Y, Cao L, Xu F Q, Chen T X, Zheng Z Y, Wan L, Liu L Y 2012 Acta Phys. Sin. 61 078103 (in Chinese) [韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云 2012 物理学报 61 078103]

    [20]

    Coville M, Thomas T D 1991 Phys. Rev. A 43 6053

    [21]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2011 J. Phys. Chem. C 115 24880

    [22]

    Cao L, Wang Y Z, Chen T X, Zhang W H, Yu X J, Ibrahim K, Wang J O, Qian H J, Xu F Q, Qi D C 2011 J. Chem. Phys. 135 174701

    [23]

    Taborski J, Vterlein P, Dietz H, Zimmermann U, Umbach E 1995 J. Electron. Spectrosc. Relat. Phenom. 75 129

    [24]

    Kikuma J, Tonner B P 1996 J. Electron. Spectrosc. Relat. Phenom. 82 41

    [25]

    Kera S, Setoyama H, Onoue M, Okudaira K K, Harada Y, Ueno N 2001 Phys. Rev. B 63 115204

    [26]

    Zahn D R T, Gavrila G N, Gorgoi M 2006 Chem. Phys. 325 99

  • [1]

    Tang M L, Bao Z N 2011 Chem. Mater. 23 446

    [2]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [3]

    Torsi L, Magliulo M, Manoli K, Palazzo G 2013 Chem. Soc. Rev. 42 8612

    [4]

    Reineke S, Thomschke M, Lssem B, Leo K 2013 Rev. Mod. Phys. 85 1245

    [5]

    Hains A W, Liang Z Q, Woodhouse M A, Gregg B A 2010 Chem. Rev. 110 6689

    [6]

    Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H 2016 Nat. Energy 1 15027

    [7]

    Ostroverkhova O 2016 Chem. Rev. 116 13279

    [8]

    Hu Z H, Zhong Z M, Chen Y W, Sun C, Huang F, Peng J B, Wang J, Cao Y 2016 Adv. Funct. Mater. 26 129

    [9]

    Pan X, Ju H X, Feng X F, Fan Q T, Wang C H, Yang Y W, Zhu J F 2015 Acta Phys. Sin. 64 077304 (in Chinese) [潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发 2015 物理学报 64 077304]

    [10]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2014 J. Phys. Chem. C 118 4160

    [11]

    Brhwiler P A, Karis O, Mrtensson N 2002 Rev. Mod. Phys. 74 703

    [12]

    Zharnikov M 2015 J. Electron. Spectrosc. Relat. Phenom. 200 160

    [13]

    Cao L, Gao X Y, Wee A T S, Qi D C 2014 Adv. Mater. 26 7880

    [14]

    Forrest S R 2003 J. Phys. Condens. Matter 15 S2599

    [15]

    Tautz F S 2007 Prog. Surf. Sci. 82 47

    [16]

    Guo Y L, Yu G, Liu Y Q 2010 Adv. Mater. 22 4427

    [17]

    Ou G P, Song Z, Wu Y Y, Chen X Q, Zhang F J 2006 Chin. Phys. B 15 1296

    [18]

    Cao L, Zhang W H, Chen T X, Han Y Y, Xu G Q, Zhu J F, Yan W S, Xu Y, Wang F 2010 Acta Phys. Sin. 59 1681 (in Chinese) [曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰 2010 物理学报 59 1681]

    [19]

    Han Y Y, Cao L, Xu F Q, Chen T X, Zheng Z Y, Wan L, Liu L Y 2012 Acta Phys. Sin. 61 078103 (in Chinese) [韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云 2012 物理学报 61 078103]

    [20]

    Coville M, Thomas T D 1991 Phys. Rev. A 43 6053

    [21]

    Cao L, Wang Y Z, Zhong J Q, Han Y Y, Zhang W H, Yu X J, Xu F Q, Qi D C, Wee A T S 2011 J. Phys. Chem. C 115 24880

    [22]

    Cao L, Wang Y Z, Chen T X, Zhang W H, Yu X J, Ibrahim K, Wang J O, Qian H J, Xu F Q, Qi D C 2011 J. Chem. Phys. 135 174701

    [23]

    Taborski J, Vterlein P, Dietz H, Zimmermann U, Umbach E 1995 J. Electron. Spectrosc. Relat. Phenom. 75 129

    [24]

    Kikuma J, Tonner B P 1996 J. Electron. Spectrosc. Relat. Phenom. 82 41

    [25]

    Kera S, Setoyama H, Onoue M, Okudaira K K, Harada Y, Ueno N 2001 Phys. Rev. B 63 115204

    [26]

    Zahn D R T, Gavrila G N, Gorgoi M 2006 Chem. Phys. 325 99

  • [1] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang. High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films. Acta Physica Sinica, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [3] Pan Xiao, Ju Huan-Xin, Feng Xue-Fei, Fan Qi-Tang, Wang Chia-Hsin, Yang Yaw-Wen, Zhu Jun-Fa. Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films. Acta Physica Sinica, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [4] Cao Ning-Tong, Zhang Lei, Lü Lu, Xie Hai-Peng, Huang Han, Niu Dong-Mei, Gao Yong-Li. van der Waals heterostructure about CuPc/MoS2(0001). Acta Physica Sinica, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [5] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [6] Cai Chun-Feng, Zhang Bing-Po, Li Rui-Feng, Xu Tian-Ning, Bi Gang, Wu Hui-Zhen, Zhang Wen-Hua, Zhu Jun-Fa. Band offsets of ZnO/PbTe heterostructure determined by synchrotron radiation photoelectron spectroscopy. Acta Physica Sinica, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [7] Jian Lei, Tan Ying-Xiong, Li Quan, Zhao Ke-Qing. Charge transport properties of truxene derivatives molecules. Acta Physica Sinica, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [8] Wan Li, Cao Liang, Zhang Wen-Hua, Han Yu-Yan, Chen Tie-Xin, Liu Ling-Yun, Guo Pan-Pan, Feng Jin-Yong, Xu Fa-Qiang. The interfacial electronic structures at FePc/TiO2(110) and FePc/C60 interface. Acta Physica Sinica, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [9] Zhang Wang, Xu Fa-Qiang, Wang Guo-Dong, Zhang Wen-Hua, Li Zong-Mu, Wang Li-Wu, Chen Tie-Xin. Thickness dependence of the interfacial interaction for the Fe/ZnO (0001) system studied by photoemission. Acta Physica Sinica, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [10] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [11] Wang Run-Sheng, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Li Rong-Hua, Xie Hong-Wei, Wang Ying, Zhao Ming, Yuan Jian-Ting. The theory of physical doping in organic semiconductor. Acta Physica Sinica, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [12] Li Xun-Shuan, Peng Ying-Quan, Yang Qing-Sen, Xing Hong-Wei, Lu Fei-Ping. Analytical model of charge transport at organic semiconductor interfaces. Acta Physica Sinica, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [13] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [14] Wang Guo-Dong, Zhang Wang, Zhang Wen-Hua, Li Zong-Mu, Xu Fa-Qiang. Synchrotron radiation photoemission studies on Fe/ZnO(0001) interface. Acta Physica Sinica, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [15] He Shao-Long, Li Hong-Nian, Wang Xiao-Xiong, Li Hai-Yang, Kurash I., Qian Hai-Jie, Su Run, Abbas M. I., Zhong Jun, Hong Cai-Hao. Synchrotron radiation photoemission study of Yb2.75C60. Acta Physica Sinica, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [16] Li Hong-Nian. Phase evolution and electronic states ofRb-intercalated C60 single crystals. Acta Physica Sinica, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [17] YUAN JIN-SHE, CHEN GUANG-DE, QI MING, LI AI-ZHEN, XU ZHUO. XPS AND AES INVESTIGATION OF GaN FILMS GROWN BY MBE. Acta Physica Sinica, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [18] LU MING, XU SHAO-HUI, ZHANG SONG-TAO, HE JUN, XIONG ZU-HONG, DENG ZHEN-BO, DING XUN-MIN. OPTICAL PROPERTIES OF ORGANIC MICROCAVITY BASED ON POROUS SILICON BRAGG REFLECTOR. Acta Physica Sinica, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
    [19] SHI YI-SHENG, ZHAO TE-XIU, LIU HONG-TU, WANG XIAO-PING. XPS AND AES STUDY FOR Pd/W/Si(lll) BILAYER INTERFACE. Acta Physica Sinica, 1992, 41(11): 1849-1855. doi: 10.7498/aps.41.1849
    [20] ZHONG ZHAN-TIAN, WANG DA-WEN, LIAO XIAN-BO, FAN YUE, LI CHENG-FANG, MOU SHAN-MING. XPS AND AES STUDY FOR Au/a-Si:H INTERFACE. Acta Physica Sinica, 1991, 40(2): 275-280. doi: 10.7498/aps.40.275
Metrics
  • Abstract views:  5382
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  23 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回