Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conversion of external cavity mechanism of millimeter-level external cavity semiconductor laser by significantly increasing relaxation oscillation frequency

Wang Yong-Sheng Zhao Tong Wang An-Bang Zhang Ming-Jiang Wang Yun-Cai

Citation:

Conversion of external cavity mechanism of millimeter-level external cavity semiconductor laser by significantly increasing relaxation oscillation frequency

Wang Yong-Sheng, Zhao Tong, Wang An-Bang, Zhang Ming-Jiang, Wang Yun-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical chaos has conducted in-depth investigation and attracted widespread attention in recent years,owing to its important applications in chaos-based secure communication,fast physical random bit generation,chaotic laser radar, lidar,chaotic optical time domain reflectometer,distance measurement,and optical fiber sensor.The key to these applications is a compact and broadband chaotic light source,because the integrated circuits have an advantage over those setups composed of discrete components in some unique virtues such as smaller size,lower cost,better stability, and better reproducibility via mass production.In order to combine the advantages of the chaotic application and integrated circuits,the integrated chaotic external-cavity semiconductor laser has aroused great interest.Note that, the integrated chaotic external-cavity semiconductor laser can work in both short-and long-cavity mechanisms,which depends on the laser relaxation oscillation frequency.The output of chaotic external cavity semiconductor laser has obvious relaxation oscillation characteristic.When the relaxation oscillation frequency is less than the external-cavity oscillation frequency,the external-cavity semiconductor laser works in short-cavity mechanism.Otherwise,it works in long-cavity mechanism.In this paper,we comparatively analyze the effects of fine-tuning cavity length on the effective bandwidth of the integrated external-cavity semiconductor laser under both short-and long-cavity mechanisms.First,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 5.6 GHz. At the same time,the injection current and carrier lifetime are adjusted to observably increase the relaxation oscillation frequency.Finally,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 40 GHz.Results show that for short-cavity mechanism,the chaotic output is not stable:0.1-mm deviation will lead to the conversion from chaotic state into non-chaotic state.By contrast,for the long-cavity mechanism,the chaotic output is more stable and has a larger chaotic area.It proves that the long-cavity mechanism is more feasible and conducive to the continuous achievement of a broadband chaotic laser and broadband continuous chaotic region.According to this feature,we realize the transition from short to long cavity regime by adjusting the injection current and carrier lifetime to substantially increase the relaxation oscillation frequency at the same time.We realize the transition from short to long cavity regime in a cavity length range from 2 mm to 10 mm,and then analyze the influences of the external cavity rate and external cavity length on the spectrum bandwidth of the external cavity semiconductor laser.The results show that under the long cavity mechanism,it is more conducive to the achievement of a broadband continuous chaotic region in a cavity lengt range from 4 mm to 20 mm.Considering the refractive index of integrated material,the external-cavity length for long-cavity mechanism can be shortened to a range from 1 mm to 2 mm.This length fully conforms to the butterfly packaging size.
      Corresponding author: Wang An-Bang, wanganbang@tyut.edu.cn
    • Funds: Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870) and the National natural science foundation of National Major Scientific Instruments Development Project (Grant No. 61527819).
    [1]

    Sciamanna M, Shore K A 2015 Nature Photon. 9 151

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [3]

    Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [8]

    Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420

    [9]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [10]

    Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201

    [11]

    Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

    [12]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [13]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772

    [14]

    Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794

    [15]

    Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206

    [16]

    Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902

    [17]

    Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101

    [18]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [19]

    Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [20]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [21]

    Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713

    [22]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [23]

    Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614

    [24]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595

    [25]

    Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243

    [26]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [27]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [28]

    Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727

    [29]

    Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901

    [30]

    Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135

    [31]

    Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188

    [32]

    Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619

    [33]

    Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521

    [34]

    Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903

    [35]

    Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization

    [36]

    Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839

    [37]

    Wen Y F 2012 Ph. D. Dissertation (McMaster University)

  • [1]

    Sciamanna M, Shore K A 2015 Nature Photon. 9 151

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [3]

    Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [8]

    Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420

    [9]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [10]

    Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201

    [11]

    Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

    [12]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [13]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772

    [14]

    Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794

    [15]

    Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206

    [16]

    Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902

    [17]

    Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101

    [18]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [19]

    Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [20]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [21]

    Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713

    [22]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [23]

    Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614

    [24]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595

    [25]

    Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243

    [26]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [27]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [28]

    Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727

    [29]

    Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901

    [30]

    Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135

    [31]

    Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188

    [32]

    Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619

    [33]

    Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521

    [34]

    Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903

    [35]

    Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization

    [36]

    Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839

    [37]

    Wen Y F 2012 Ph. D. Dissertation (McMaster University)

  • [1] Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang. Evolution of extreme events in chaotic light-injected semiconductor lasers. Acta Physica Sinica, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] Liu Yuan, Yuan Ji-Yang, Zhou Xin-Yu, Gu Shuang-Quan, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. Fast physical random bit generation of wideband flat chaos signal based on filter feedback. Acta Physica Sinica, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [3] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [4] Wei Yue, Fan Li, Xia Guang-Qiong, Chen Yu-Lin, Wu Zheng-Mao. Bidirectional chaos communication based on two semiconductor lasers subjected to incoherent optical injection of common-chaotic-signal. Acta Physica Sinica, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [5] Ding Ling, Wu Zheng-Mao, Wu Jia-Gui, Xia Guang-Qiong. Unidirectional open-loop chaotic synchronization communication based on a semiconductor laser with double optical feedback. Acta Physica Sinica, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [6] Liang Jun-Sheng, Wu Yuan, Wang An-Bang, Wang Yun-Cai. Extracting the external-cavity key of a chaotic semiconductor laser with double optical feedback by spectrum analyzer. Acta Physica Sinica, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [7] Xiao Bao-Jin, Hou Jia-Yin, Zhang Jian-Zhong, Xue Lu-Gang, Wang Yun-Cai. The effect of the relaxation oscillation frequency of chaotic semiconductor laser on the rate of random sequence. Acta Physica Sinica, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [8] Ding Ling, Wu Jia-Gui, Xia Guang-Qiong, Shen Jin-Ting, Li Neng-Yao, Wu Zheng-Mao. Suppression of time delay feedback signatures in a semiconductor laser with double optical feedback. Acta Physica Sinica, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [9] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [10] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [11] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [12] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [13] Zhang Xiu-Juan, Wang Bing-Jie, Yang Ling-Zhen, Wang An-Bang, Guo Dong-Ming, Wang Yun-Cai. Flat broadband chaotic carrier generation and synchronization. Acta Physica Sinica, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [14] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] Liu Sheng-Fang, Xia Guang-Qiong, Wu Jia-Gui, Li Lin-Fu, Wu Zheng-Mao. Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection. Acta Physica Sinica, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [16] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [17] Kong Ling-Qin, Wang An-Bang, Wang Hai-Hong, Wang Yun-Cai. Dynamics of semiconductor laser with optical feedback: Evolution from low-frequency fluctuations to chaos. Acta Physica Sinica, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [18] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] Liu Chong, Ge Jian-Hong, Chen Jun. Influence of external cavity feedback on the oscillating characteristics of a semiconductor laser. Acta Physica Sinica, 2006, 55(10): 5211-5215. doi: 10.7498/aps.55.5211
Metrics
  • Abstract views:  5338
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2017
  • Accepted Date:  25 June 2017
  • Published Online:  05 December 2017

/

返回文章
返回