Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser

Wang Long-Sheng Zhao Tong Wang Da-Ming Wu Dan-Yu Zhou Lei Wu Jin Liu Xin-Yu Wang An-Bang

Citation:

14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser

Wang Long-Sheng, Zhao Tong, Wang Da-Ming, Wu Dan-Yu, Zhou Lei, Wu Jin, Liu Xin-Yu, Wang An-Bang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Real-time high-speed physical random numbers are crucial for a broad spectrum of applications in cryptography, communications as well as numerical computations and simulations.Chaotic laser is promising to construct high-speed physical random numbers in real time benefitting from its complex nonlinear dynamics.However,the real-time generation rate of physical random numbers by using single-bit extraction is confronted with a bottleneck because of the bandwidth limitation caused by laser relaxation,which dominates the laser chaos and then limits the effective bandwidth only to a few GHz.Although some bandwidth-enhanced methods have been proposed to increase the single-bit generation rate, the potential is very limited,and meanwhile the defects of system complexity will be introduced.An alternative method is to construct high-speed physical random numbers by using the multi-bit extraction.In this method,each sampling point is converted to N digital bits by using multi-bit analog-to-digital converter (ADC) and their M(M 6 N) least significant bits are retained as an output of random bits,where N and M are the numbers of ADC bits and retained bits,respectively.The generation rate of random numbers is thus equal to M times sampling rate and can be greatly increased.Whereas,in the multi-bit extraction demonstrations,the intensity output of chaotic laser is usually digitized by the commercial oscilloscope and then processed with least-significant-bit retention followed by other postprocessing methods such as derivative,exclusive-OR,and bit-order reversal.These followed post-processing operations have to be implemented off-line and thus cannot support the real-time generation of random numbers.Resultantly,it is still an ongoing challenge to develop high-speed generation schemes of physical random numbers with the capability of real-time output.In this paper,a real-time high-speed generation method of physical random numbers by using multi-bit quantization of chaotic laser is proposed and demonstrated experimentally.In the proposed generation scheme,an external-cavity feedback semiconductor laser is utilized as a source of chaotic laser.Through quantizing the chaotic laser with 6-bit ADC, which is triggered by a clock at a sampling rate of 7 GHz,a binary sequence with six significant bits can be achieved. After the selection of the two least-significant bits and self-delayed exclusive-OR operation in the field-programmable gate array (FPGA),a real-time 14-Gb/s binary stream is finally achieved.This binary stream has good uniformity and independence,and has passed the industry-standard statistical test suite provided by the National Institute of Standards and Technology (NIST),showing a good statistical randomness.It is believed that this work provides an alternative method of generating the real-time high-speed random numbers and promotes its applications in the field of information security.
      Corresponding author: Liu Xin-Yu, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn ; Wang An-Bang, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61475111, 61671316), the Natural Science Foundation for Excellent Young Scientists of Shanxi, China (Grant No. 2015021004), the International Science and Technology Cooperation Program of Shanxi Province, China (Grant No. 201603D421008), and the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870).
    [1]

    Metropolis N, Ulam S 1949 J. Amer. Stat. Assoc. 44 335

    [2]

    Zhao Q C, Yin H X 2013 Optik 124 2161

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. Syst. I:Fundam. Theory Appl. 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [6]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [7]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [8]

    Zhao D L, Li P, Liu X L, Guo X M, Guo Y Q, Zhang J G, Wang Y C 2017 Acta Phys. Sin. 66 050501 (in Chinese)[赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才 2017 物理学报 66 050501]

    [9]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [12]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [13]

    Hong Y H, Spencer P S, Shore K A 2012 J. Opt. Soc. Amer. B 29 415

    [14]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [17]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [18]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [19]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [20]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Araiet K, Yoshimura K, Davis P 2012 IEEE Photon. Technol. Lett. 24 1042

    [21]

    Oliver N, Soriano M, Sukow D, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [22]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [24]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [25]

    Wang A B, Wang L S, Li P, Wang Y C 2017 Opt. Express 25 3153

    [26]

    Wu D Y, Zhou L, Huang Y K, Wang P, Wu J, Jin Z, Liu X Y 2016 Bipolar/BiCMOS Circuits and Technology Meeting New Jersey, America, September 25-27 2016 p90

    [27]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [28]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [29]

    Sciamanna M, Shore K A 2015 Nat. Photon. 9 151

    [30]

    Wang L S, Zhao T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y, Wang Y C, Wang A B 2017 IEEE Photon. J. 9 7201412

  • [1]

    Metropolis N, Ulam S 1949 J. Amer. Stat. Assoc. 44 335

    [2]

    Zhao Q C, Yin H X 2013 Optik 124 2161

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. Syst. I:Fundam. Theory Appl. 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [6]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [7]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [8]

    Zhao D L, Li P, Liu X L, Guo X M, Guo Y Q, Zhang J G, Wang Y C 2017 Acta Phys. Sin. 66 050501 (in Chinese)[赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才 2017 物理学报 66 050501]

    [9]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [12]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [13]

    Hong Y H, Spencer P S, Shore K A 2012 J. Opt. Soc. Amer. B 29 415

    [14]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [17]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [18]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [19]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [20]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Araiet K, Yoshimura K, Davis P 2012 IEEE Photon. Technol. Lett. 24 1042

    [21]

    Oliver N, Soriano M, Sukow D, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [22]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [24]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [25]

    Wang A B, Wang L S, Li P, Wang Y C 2017 Opt. Express 25 3153

    [26]

    Wu D Y, Zhou L, Huang Y K, Wang P, Wu J, Jin Z, Liu X Y 2016 Bipolar/BiCMOS Circuits and Technology Meeting New Jersey, America, September 25-27 2016 p90

    [27]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [28]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [29]

    Sciamanna M, Shore K A 2015 Nat. Photon. 9 151

    [30]

    Wang L S, Zhao T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y, Wang Y C, Wang A B 2017 IEEE Photon. J. 9 7201412

  • [1] Wang Yong-Bo, Tang Xi, Zhao Le-Han, Zhang Xin, Deng Jin, Wu Zheng-Mao, Yang Jun-Bo, Zhou Heng, Wu Jia-Gui, Xia Guang-Qiong. A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring. Acta Physica Sinica, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang. Evolution of extreme events in chaotic light-injected semiconductor lasers. Acta Physica Sinica, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [3] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] Yao Xiao-Jie, Tang Xi, Wu Zheng-Mao, Xia Guang-Qiong. Multi-channel physical random number generation based on two orthogonally mutually coupled 1550 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [6] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] Zhao Dong-Liang, Li Pu, Liu Xiang-Lian, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Wang Yun-Cai. Online real-time 7 Gbit/s physical random number generation utilizing chaotic laser pulses. Acta Physica Sinica, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [8] Sun Yuan-Yuan, Li Pu, Guo Yan-Qiang, Guo Xiao-Min, Liu Xiang-Lian, Zhang Jian-Guo, Sang Lu-Xiao, Wang Yun-Cai. Chaotic laser-based ultrafast multi-bit physical random number generation without post-process. Acta Physica Sinica, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [9] Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai. Study on real-time optical sampling of chaotic laser for all-optical physical random number generator. Acta Physica Sinica, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [10] Liu Ying-Ying, Pan Wei, Jiang Ning, Xiang Shui-Ying, Lin Yu-Dong. Isochronal chaos synchronization of a chain mutually coupled semiconductor lasers. Acta Physica Sinica, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [11] Liu Liu, Zheng Jian-Yu, Zhang Ming-Jiang, Meng Li-Na, Zhang Zhao-Xia, Wang Yun-Cai. Photonic generation and transmission of chaotic ultra wideband signals. Acta Physica Sinica, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [12] Xiao Bao-Jin, Hou Jia-Yin, Zhang Jian-Zhong, Xue Lu-Gang, Wang Yun-Cai. The effect of the relaxation oscillation frequency of chaotic semiconductor laser on the rate of random sequence. Acta Physica Sinica, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [13] Tang Xi, Wu Jia-Gui, Xia Guang-Qiong, Wu Zheng-Mao. 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Acta Physica Sinica, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [14] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [15] Meng Li-Na, Zhang Ming-Jiang, Zheng Jian-Yu, Zhang Zhao-Xia, Wang Yun-Cai. Chaotic ultra-wideband microwave signal generation utilizing an optical injection chaotic laser diode. Acta Physica Sinica, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [16] Chen Sha-Sha, Zhang Jian-Zhong, Yang Ling-Zhen, Liang Jun-Sheng, Wang Yun-Cai. One Gbit/s random bit generation based on chaotic laser. Acta Physica Sinica, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [17] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [18] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [19] Niu Sheng-Xiao, Wang Yun-Cai, He Hu-Cheng, Zhang Ming-Jiang. Tunable photonic microwave generation using optically injected semiconductor laser. Acta Physica Sinica, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [20] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
Metrics
  • Abstract views:  4895
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2017
  • Accepted Date:  04 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回